导数公式推导
这几个公式是怎么推导出来的?[f(x)+g(x)]'=f'(x)+g'(x)[af(x)]'=af'(x)a为常数/f(x)\'=f'(x)g(x)-f(x)g(x)'\...
这几个公式是怎么推导出来的?
[f(x)+g(x)]'=f'(x)+g'(x)
[af(x)]'=af'(x) a为常数
/f(x)\'=f'(x)g(x)-f(x)g(x)'
\g(x)/ {g(x)}2 展开
[f(x)+g(x)]'=f'(x)+g'(x)
[af(x)]'=af'(x) a为常数
/f(x)\'=f'(x)g(x)-f(x)g(x)'
\g(x)/ {g(x)}2 展开
2个回答
展开全部
c'=0(c为常数)
(x^a)'=ax^(a-1),a为常数且a≠0
(a^x)'=a^xlna
(e^x)'=e^x
(logax)'=1/(xlna),a>0且
a≠1
(lnx)'=1/x
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=(secx)^2
(secx)'=secxtanx
(cotx)'=-(cscx)^2
(cscx)'=-csxcotx
(arcsinx)'=1/√(1-x^2)
(arccosx)'=-1/√(1-x^2)
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(shx)'=chx
(chx)'=shx
【俊狼猎英】团队为您解答
(x^a)'=ax^(a-1),a为常数且a≠0
(a^x)'=a^xlna
(e^x)'=e^x
(logax)'=1/(xlna),a>0且
a≠1
(lnx)'=1/x
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=(secx)^2
(secx)'=secxtanx
(cotx)'=-(cscx)^2
(cscx)'=-csxcotx
(arcsinx)'=1/√(1-x^2)
(arccosx)'=-1/√(1-x^2)
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(shx)'=chx
(chx)'=shx
【俊狼猎英】团队为您解答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据导数的定义和极限运算法则:
1.[f(x)+g(x)]'
=lim(Δx→0)((f(x+Δx)-f(x)+g(x+Δx)-g(x))/Δx)
=(lim(Δx→0)(f(x+Δx)-f(x))/Δx)+(lim(Δx→0)(g(x+Δx)-g(x))/Δx)
=f'(x)+g'(x)。
2.[af(x)]'
=lim(Δx→0)(af(x+Δx)-af(x))/Δx)
=a*lim(Δx→0)(f(x+Δx)-f(x))/Δx)
=af'(x)。
3.[f(x)/g(x)]'
=lim(Δx→0)(f(x+Δx)/g(x+Δx)-f(x)/g(x))/Δx)
=lim(Δx→0)((g(x)*f(x+Δx)-f(x)*g(x+Δx))/(g(x+Δx)*g(x)))/Δx)
=lim(Δx→0)((g(x)*f(x+Δx)/Δx-f(x)*g(x+Δx)/Δx)/(g(x+Δx)*g(x)))
=lim(Δx→0)(g(x)*f(x+Δx)/Δx-f(x)*g(x+Δx)/Δx)/lim(Δx→0)(g(x+Δx)*g(x))
=(f'(x)g(x)-f(x)g'(x))/(g(x))²。
1.[f(x)+g(x)]'
=lim(Δx→0)((f(x+Δx)-f(x)+g(x+Δx)-g(x))/Δx)
=(lim(Δx→0)(f(x+Δx)-f(x))/Δx)+(lim(Δx→0)(g(x+Δx)-g(x))/Δx)
=f'(x)+g'(x)。
2.[af(x)]'
=lim(Δx→0)(af(x+Δx)-af(x))/Δx)
=a*lim(Δx→0)(f(x+Δx)-f(x))/Δx)
=af'(x)。
3.[f(x)/g(x)]'
=lim(Δx→0)(f(x+Δx)/g(x+Δx)-f(x)/g(x))/Δx)
=lim(Δx→0)((g(x)*f(x+Δx)-f(x)*g(x+Δx))/(g(x+Δx)*g(x)))/Δx)
=lim(Δx→0)((g(x)*f(x+Δx)/Δx-f(x)*g(x+Δx)/Δx)/(g(x+Δx)*g(x)))
=lim(Δx→0)(g(x)*f(x+Δx)/Δx-f(x)*g(x+Δx)/Δx)/lim(Δx→0)(g(x+Δx)*g(x))
=(f'(x)g(x)-f(x)g'(x))/(g(x))²。
参考资料: 原创
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询