(二重积分)求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积。

我搞不清楚的是后面那个方程的图形是什么样的,还有我看见参考书上用后面一个方程减去前面一个方程,很是不解,不知道为什么?... 我搞不清楚的是后面那个方程的图形是什么样的,还有我看见参考书上用后面一个方程减去前面一个方程,很是不解,不知道为什么? 展开
爱衣ai
2009-04-28 · TA获得超过2325个赞
知道大有可为答主
回答量:802
采纳率:0%
帮助的人:1208万
展开全部

看图,中间鼓出来的部分就是这两个曲线围成的立体体积 

这两个面一个向上凸,一个向下凹,刚好围成一个稍扁长的区域 

那求体积就是用上面的面减去下面的面再积分 

积分范围就是它们的交线

robin_2006
2009-04-28 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8291万
展开全部
图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子
首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,所以立体在xy坐标面上的投影区域是D:x^2+y^2≤2
其次,根据二重积分的几何意义,立体的体积是两个曲顶柱体的体积的差,两个曲顶分别是Z=x^2+2y^2和z=6-2x^2-y^2,很容易判断得到z=6-2x^2-y^2在Z=x^2+2y^2上方
所以,立体的体积V=∫∫(D)[(6-2x^2-2y^2)-(x^2+2y^2)]dxdy,在极坐标系下化为累次积分:V=∫(0~2π)dθ∫(0~√2)(6-3ρ^2)ρdρ=6π
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友6567883c53
2009-04-28 · TA获得超过4737个赞
知道大有可为答主
回答量:1260
采纳率:0%
帮助的人:1367万
展开全部
你可以想象一下,这个z是恒非负0的,确定z轴为向上的轴,当z的值确定时,可以得到x^2/z+2y^2/z=1,即这个图形是一个倒椭圆锥,不知道这么形容贴切不,因为这个图像被平行于XOY轴的平面所截得到的是椭圆,在XOY面上的投影,就是整个XOY平面吧,因为x,y的取值没有限定,整个图像的投影是xoy全平面,但被任意平行于xoy面的平面z=k(k>0)所截得到的图形是椭圆。

z=x*x+2y*y与6-z=x*x+2y*y围成了闭合图形,算一下z=6-z,得到z=3,也就是说,这两个方程图像在z=3处闭合,本题既是算0<=z<=3时的积分,此时6-z>z,z的差值为(6-z)-z=6-2z
本题积分为∫∫(6-2z)ds,s即积分体积在xoy面的投影,椭圆x^2+2y^2=3
采用变换,r^2=x^2+2y^2,x=rcosθ,y=(r/√2)sinθ,注意θ∈[0,2π],
r∈[0,√3],z=x^2+2y^2=r^2
∫∫(6-2z)ds=∫∫r(6-2r^2)dθdr(注意变换后多出一个r,θ从0积到2π,r从0积到√3)
=2π*(9/2)=9π

希望对楼主有帮助 要是还不懂可以问我 呵呵
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ggggwhw
2009-04-28 · TA获得超过6692个赞
知道大有可为答主
回答量:2438
采纳率:0%
帮助的人:957万
展开全部
http://hi.baidu.com/ggggwhw/album/item/8ff75efaa148c847024f56a5.html
两个图象都是椭圆双曲面,xy方向的截面为椭圆,yz和xz方向的截面是抛物线.
两个方程做差就是xy平面上的高线长度了.然后在x,y方向上积分.
g(x,y)
=x^2 + 2 y^2 - (6 - 2 x^2 - y^2)
=-6 + 3 x^2 + 3 y^2
令g(x,y)=0可求出积分边界为半径为√(2)的圆,x^2+y^2=2,
于是积分区域为x∈[-√(2),√(2)],y∈[-√(2^2-x^2),√(2^2-x^2)],
也可以进行变量代换换成极柱坐标系进行积分.
后面的我不说了.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
chenjf05
2009-04-28 · TA获得超过9863个赞
知道小有建树答主
回答量:1049
采纳率:0%
帮助的人:1704万
展开全部
两者都是抛物线型的锥状体(应该明白我是什么意思吧),,两者方向相反

我先回答的~~
如有疑问请在线交谈~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式