小学数学概念

1.公因数、公倍数的概念2.素数(质数)和合数的概念3.因数、倍数的特点4.自然数的分类(可以按是否是2的倍数因数的个数来分)请不要复制!!还有......二楼的家伙在干... 1.公因数、公倍数的概念 2.素数(质数)和合数的概念 3.因数、倍数的特点 4.自然数的分类(可以按是否是2的倍数 因数的个数来分)
请不要复制!!还有......二楼的家伙在干什么!!!!!!
展开
 我来答
帐号已注销
2009-05-01 · TA获得超过1267个赞
知道小有建树答主
回答量:294
采纳率:0%
帮助的人:233万
展开全部
1.两个或以上数的公共的质因数(除1和自己本身的数能被其它数整除的数叫做质因数), 两个或以上的公共的倍数(例如2的倍数是4、6、8……)。

2.质数是除1和自己本身的数之外不能被其它数整除(例如2、3、5、7、11……),合数刚好和质数相反,除1和自己本身的数之外能被其它数整除(例如4、6、8、9……)

3.一个因数能让他的积整除,那么,这个数就是因数,他的积就是倍数。

4.分为质数和合数,或整数和分数,或有理数和无理数,或正数或负数。

0和1既不是质数,也不是合数

这些都是本人自己想的,都没看书,所以可能跟书本有点出入,其实你翻一下书本都能够找到的。^_^
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
李哲煜
2009-05-01 · TA获得超过577个赞
知道答主
回答量:268
采纳率:100%
帮助的人:76.3万
展开全部
和差问题

已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:

(和-差)÷2=较小数

(和+差)÷2=较大数

例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?

(24+4)÷2

=28÷2

=14 →乙数

(24-4)÷2

=20÷2

=10 →甲数

答:甲数是10,乙数是14。

差倍问题

已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:

两数差÷倍数差=较小数

例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?

分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:

(40-5×2)÷(3-1)-5

=(40-10)÷2-5

=30÷2-5

=15-5

=10(吨) →第一堆煤的重量

10+40=50(吨) →第二堆煤的重量

答:第一堆煤有10吨,第二堆煤有50吨。

还原问题

已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。

还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。

例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?

分析:如果第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。

列式:[(19+12)×2-12]×2

=[31×2-12]×2

=[62-12]×2

=50×2

=100(吨)

答:这个仓库原来有大米100吨。

置换问题

题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。

例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?

分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

列式:(2000-1880)÷(20-10)

=120÷10

=12(张)→10分一张的张数

100-12=88(张)→20分一张的张数

或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

盈亏问题(盈不足问题)

题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:

当一次有余数,另一次不足时:

每份数=(余数+不足数)÷两次每份数的差

当两次都有余数时:

总份数=(较大余数-较小数)÷两次每份数的差

当两次都不足时:

总份数=(较大不足数-较小不足数)÷两次每份数的差

例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗?

分析:由条件可知,这道题属第一种情况。

列式:(14+4)÷(7-5)

=18÷2

= 9(人)

5×9+14

=45+14

=59(棵)

或:7×9-4

=63-4

=59(棵)

答:这个班有9人,一共有树苗59棵。

年龄问题

年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:

成倍时小的年龄=大小年龄之差÷(倍数-1)

几年前的年龄=小的现年-成倍数时小的年龄

几年后的年龄=成倍时小的年龄-小的现在年龄

例1、父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?

(54-12)÷(4-1)

=42÷3

=14(岁)→儿子几年后的年龄

14-12=2(年)→2年后

答:2年后父亲的年龄是儿子的4倍。

例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?

(54-12)÷(7-1)

=42÷6

=7(岁)→儿子几年前的年龄

12-7=5(年)→5年前

答:5年前父亲的年龄是儿子的7倍。

例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?

(148×2+4)÷(3+1)

=300÷4

=75(岁)→父亲的年龄

148-75=73(岁)→母亲的年龄

答:王刚的父亲今年75岁,母亲今年73岁。

或:(148+2)÷2

=150÷2

=75(岁)

75-2=73(岁)

鸡兔问题

已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。

一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:

(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数

(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数

例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?

3k W UEw9I0

R,@ F/|1V7YWd-r0

Gb(e(o/X3QE&dL$Z0 凤凰博客h7IM?pJ'u7NV

'IG\ rf Y E0
(64-2×24)÷(4-2)

=(64-48)÷(4-2)

=16 ÷2

=8(只)→兔的只数

24-8=16(只)→鸡的只数

答:笼中的兔有8只,鸡有16只

凤凰博客3@8Zp|S5|+U



牛吃草问题(船漏水问题)

若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?

例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?

分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)

=(150-125)÷(10-5)

=25÷5

=5(头)→可供5头牛吃一天。

150-10×5

=150-50

=100(头)→草地上原有的草可供100头牛吃一天

100÷(10-5)

=100÷5

=20(天)

答:若供10头牛吃,可以吃20天。

例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?

(100×4-50×6)÷(100-50)

=(400-300)÷(100-50)

=100÷50

=2

400-100×2

=400-200

=200

200÷(7-2)

=200÷5

=40(分)

答:用7部同样的抽水机,40分钟可以抽干这口井里的水。

公约数、公倍数问题

运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题。

例1:一块长方体木料,长2.5米,宽1.75米,厚0.75米。如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?

分析:2.5=250厘米

1.75=175厘米

0.75=75厘米

其中250、175、75的最大公约数是25,所以正方体的棱长是25厘米。

(250÷25)×(175÷25)×(75÷25)

=10×7×3

=210(块)

答:正方体的棱长是25厘米,共锯了210块。

例2、两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周?

分析:因为24和40的最小公倍数是120,也就是两个齿轮都转120个齿时,第一次接触的一对齿,刚好第二次接触。

120÷24=5(周)

120÷40=3(周)

答:每个齿轮分别要转5周、3周。

分数应用题

指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题。

分数应用题一般分为三类:

1.求一个数是另一个数的几分之几。

2.求一个数的几分之几是多少。

3.已知一个数的几分之几是多少,求这个数。

其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题。

例1:育才小学有学生1000人,其中三好学生250人。三好学生占全校学生的几分之几?

答:三好学生占全校学生的。

例2:一堆煤有180吨,运走了。走了多少吨?

180×=80(吨)

答:运走了80吨。

例3:某农机厂去年生产农机1800台,今年计划比去年增加。今年计划生产多少台?

1800×(1+)

=1800×

=2400(台)

答:今年计划生产2400台。

例4:修一条长2400米的公路,第一天修完全长的,第二天修完余下的。还剩下多少米?

2400×(1-)×(1-)

=2400××

=1200(米)

答:还剩下1200米。

例5:一个学校有三好学生168人,占全校学生人数的。全校有学生多少人?

168÷=840(人)

答:全校有学生840人。

例6:甲库存粮120吨,比乙库的存粮少。乙库存粮多少吨?

120÷=120×=180(吨)

答:乙库存粮180吨。

例7:一堆煤,第一次运走全部的,第二次运走全部的,第二次比第一次少运8吨。这堆煤原有多少吨?

8÷(-)

= 8÷

=48(吨)

答:这堆煤原有48吨。

工程问题

它是分数应用题的一个特例。是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。

解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:

6q1U]7in!S7x0
凤凰博客tr IJ0OYWV

P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作时间=工作量

'F5q/f,z5b@y0
工作量÷工作时间=工作效率

凤凰博客q!q1Nc3E-n`a9[Q$M

工作量÷工作效率=工作时间

凤凰博客9FA*o d#`7I!l

例1:一项工程,甲队单独做需要18天,乙队单独做需要24天。如果两队合作8天后,余下的工程由甲队单独做,还要几天完成?

N W5l,VjH`|0
凤凰博客+ZO'R HhI

凤凰博客hq$TU!bO$rEQ
凤凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷

=×18

=4(天)

答:(略)。

凤凰博客1Q0RO&]%owG

例2:一个水池,装有甲、乙两个进水管,一个出水管。单开甲管2小时可以注满;单开乙管3小时可以注满;单开出水管6小时可以放完。现在三管在池空时齐开,多少小时可以把水池注满?

|5W.WuC3p0
凤凰博客 SX}9q7|f

凤凰博客UO`8_%F(u8Br

"[6Xr3MHv)I0 1÷(+-) 凤凰博客I@ ?b&W+CD

=1÷

=1(小时)

答:(略)

凤凰博客o Sj4ON:}2\/a+N

百分数应用题

这类应用题与分数应用题的解答方式大致相同,仅求“率”时,表达方式不同,意义不同。

例1.某农科所进行发芽试验,种下250粒种子。发芽的有230粒。求发芽率。

答:发芽率为92%。

1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
回答者: 756056266 - 助理 三级 5-1 10:48 分类上升达人排行榜
用户名 动态 上周上升
rogerandjackey 1460
qsmm 1455
zjlhzxh 1040
gg小可爱 875
丸风の山造 790
更多>>

订阅该问题
中国注意力训练第一人 舒尔特方格..
中小学生注意力训练,五分钟提高学习成绩.30年经验积淀,20年亲身实践.3项国家专利,一..
www.bjlzq.net
现代教育导引 教学杂志
现代教育导引杂志吸收了全国优秀的教育教学资源,具有较强的导引性,实用性和权威性.是..
www.xdjydy.com
瀚源达心理健康培训 特色办学
我们是为青少年提供心理健康培训的学校,自主创立了成功学习心理训练系统,解决让优秀..
www.hydcgxlyj.com
贵州非常少年训练学校 专业差生教育
贵州非常少年训练学校是一所专门招收令家长头疼,老师烦心的传统教育意义上的所谓"差..
www.fcsn3579.com
功能强大的网络教学平台
专业提供Blackboard网络教学平台,能够有效实现在线答疑,在线测试,多媒体辅助教学等强..
www.cbb.edu.cn
中国教育教学杂志
《中国教育教学杂志》是中国教育教学研究会主办,中国科技文化出版社公开出版发行的学..
www.edu95.com
卓越教研论文发表 专业 诚信 高效
以武汉著名高校资源为依托,卓越教研论文发表网已成功运营三年多,是教研论文发表行业..
www.whzylw.com
来百度推广小学教育

您想在自己的网站上展示百度“知道”上的问答吗?来获取免费代码吧!
--------------------------------------------------------------------------------
如要投诉或提出意见建议,请到
百度知道投诉吧反馈。

©2009 Baidu
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
读不懂_看不清
2009-05-01 · 超过13用户采纳过TA的回答
知道答主
回答量:55
采纳率:0%
帮助的人:46.1万
展开全部
1. 在两个或几个数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何非零自然数都有公因数1.而这些公因数中最大的那个称为这些正整数的最大公因数。
试卷上会让你去求某两个数的最大公因数。
例:
12和18的最大公因数
12的因数有:1、2、3、4、6、12
18的因数有:1、2、3、6、9、18
12和18的公因数有:1、2、3、6,而最大的数就是6了,最大公因数也就是6了!
1是所有数字的因数
题目只会让你做最大公因数,最小必定是1,无研究价值(0与负数除外)
最小公倍数:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
求三个数的最小公倍数》其教学重点是让学生学会求三个数的最小公倍数的方法,难点是让学生理解三个数的最小公倍数的组成,即由三个数公有的质因数、两个数公有的质因数和各自独有的质因数相乘。这个难点不太容易突破。在平时教学中,经常见到大部分老师回避了教学难点,仅仅采用传统的“独白”方式,告诉学生怎样去求最小公倍数,而后通过巩固练习让学生熟练掌握该方法。在这个过程中学生的学习是被动的,学生的思维没有得以充分的激活。真正的教育不是“告诉”,有意义的知识是学生在具体情境中通过活动体验而自主建构的.
举例:A和B A/B=C
如果A能被B整除,则A为B和C的公倍数
两个数A和B,它们的公倍数就是既是A的倍数又是B的倍数的数,即能同时被A、B整除的数
比如说:12和15,它们的公倍数是60,120,180,等等
在这些公倍数中最小的那一个就叫最小公倍数,就是60
如何求最小公倍数?
首先把两个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。
比如求45和30的最小公倍数。
45=3*3*5
30=2*3*5
不同的质因数是2,3,5。3是他们两者都有的质因数,由于45有两个3,30只有一个3,所以计算最小公倍数的时候乘两个3.
最小公倍数等于2*3*3*5=90
又如计算36和270的最小公倍数
36=2*2*3*3
270=2*3*3*3*5
不同的质因数是5。2这个质因数在36中比较多,为两个,所以乘两次;3这个质因数在270个比较多,为三个,所以乘三次。
最小公倍数等于2*2*3*3*3*5=540
2。一个数,如果只有1和它本身两个因数,这样的数叫做质数,又称素数。例如(10以内) 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。特别声明一点,1既不是质数也不是合数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(1不是质数,也不是合数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。质数中除2是偶数外,其他都是奇数。
合数是整数中除了1和它本身还能被其他的整数整除的整数.
除2之外的偶数都是合数.(除0以外)
合数又名合成数,是满足以下任一(等价)条件的正整数:
1.是两个大于1 的整数之乘积;
2.拥有某大于1 而小于自身的因数(因子);
3.拥有至少三个因数(因子);
4.不是1 也不是素数(质数);
5.有至少一个素因子的非素数.
3 一整数被另一整数整除,后者即是前者的因数,如1,2,4都为8的因数
A 除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数.
B 我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
C 约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。3大小关系不同.当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。
①一个数能够把另一数整除,这个数就是另一数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
②一个数除以另一数所得的商。如a÷b=c,就是说a是b的c倍,a是b的倍数。
3 一个因数能让他的积整除,那么,这个数就是因数,他的积就是倍数。
3 × 5 = 15
↑ ↑ ↑
因数1因数2 倍数
例如:A÷B=C,就可以说A是B的C倍
③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集.
4。自然数的分类不看人笼统分为几类,根据不同的标准划分:如将其分为素数和合数,是根据是否能被除自身与1整除。还可以分为奇数偶数等~
而你之前问的因数倍数不可以看成自然数的分类~

参考资料: 百度百科

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
水滴坏坏
2009-05-01 · TA获得超过205个赞
知道答主
回答量:80
采纳率:0%
帮助的人:0
展开全部
一个数,如果只有1和它本身两个约数,这样的数叫做质数或素数。一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。只知道这些了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式