高二数学题:若z=cosx+isinx(i是虚数单位)《x是一个角度》,则使z^2=1的x的值可能是?说明理由!谢谢!
3个回答
展开全部
直接用虚数相等的原则即可解此题,不需要三角变换。
因为
z ^ 2 = 1
所以
z = 1 或 -1
即
cos x + i * sin x = 1 或 -1
由于两虚数相等,则两者的实部和虚部一定都分别相等,故
cos x = 1 或 -1
sin x = 0
得
x = 0度 或 180度
原题目有误,如果是z = sin x + i * cos x,那就可以选D了。
--------------------------------------------------------
如果改为z ^ 2 = -1
因为
z ^ 2 = -1
所以
z = i 或 -i
即
cos x + i * sin x = i 或 -i
由于两虚数相等,则两者的实部和虚部一定都分别相等,故
cos x = 0
sin x = 1 或 -1
得
x = 90度 或 270度
过程大同小异,也是选D。
因为
z ^ 2 = 1
所以
z = 1 或 -1
即
cos x + i * sin x = 1 或 -1
由于两虚数相等,则两者的实部和虚部一定都分别相等,故
cos x = 1 或 -1
sin x = 0
得
x = 0度 或 180度
原题目有误,如果是z = sin x + i * cos x,那就可以选D了。
--------------------------------------------------------
如果改为z ^ 2 = -1
因为
z ^ 2 = -1
所以
z = i 或 -i
即
cos x + i * sin x = i 或 -i
由于两虚数相等,则两者的实部和虚部一定都分别相等,故
cos x = 0
sin x = 1 或 -1
得
x = 90度 或 270度
过程大同小异,也是选D。
展开全部
0°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
z=cosx+isinx
z^2=cos^2x-sin^2x+2isinxcosx
=cos2x+isin2x=1
cos2x=1,sin2x=0
2x=2kπ
x=kπ
z^2=cos^2x-sin^2x+2isinxcosx
=cos2x+isin2x=1
cos2x=1,sin2x=0
2x=2kπ
x=kπ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询