三角函数的和差化积公式
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
对于和差化积公式来说,若等号左边全是sin,则右边异名,若等号左边全是cos,则等号右边同名,若等号左边中间的正负号决定了右边第二项,若是正,则是cos,若是负,则是sin,可以根据第一条原则写出完整的右边式子,最后记得cos-cos要添一个负号。
扩展资料:
三角函数概念注意的问题:
1、初中阶段的所说的锐角三角函数是锐角的正弦、余弦、正切、余切四种函数的统称。
2、锐角三角函数表示的是两个正数的比值,因而锐角三角函数没有单位。
3、理清锐角三角函数中的自变量与因变量,对于四种函数来说,以∠A为例,自变量都是锐角A,因变量就是锐角A的四种三角函数,这说明当锐角A的大小不变时,锐角A的正弦值、余弦值、正切值、余切值也将保持不变。
4、锐角三角函数中自变量的取值范围,锐角三角函数的自变量是锐角,所以自变量∠A的范围就是0°<∠A<90°。
参考资料来源:百度百科-三角函数
参考资料来源:百度百科-和差化积
2024-12-30 广告
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
三角函数的积化和差公式
sinα·cosβ=[sin(α+β)+sin(α-β)]/2
cosα·sinβ=[sin(α+β)-sin(α-β)]/2
cosα·cosβ=[cos(α+β)+cos(α-β)]/2
sinα·sinβ=-[cos(α+β)-cos(α-β)]/2
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
三角函数的积化和差公式
sinα·cosβ=[sin(α+β)+sin(α-β)]/2
cosα·sinβ=[sin(α+β)-sin(α-β)]/2
cosα·cosβ=[cos(α+β)+cos(α-β)]/2
sinα·sinβ=-[cos(α+β)-cos(α-β)]/2
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]