已知递增等比数列{an}满足a2+a3+a4=28,a3+2是a2与a4的等差中项,求{an}的通项公式

已知递增等比数列{an}满足a2+a3+a4=28,a3+2是a2与a4的等差中项,求{an}的通项公式。... 已知递增等比数列{an}满足a2+a3+a4=28,a3+2是a2与a4的等差中项,求{an}的通项公式。 展开
s1h1x
2009-05-04 · TA获得超过498个赞
知道答主
回答量:145
采纳率:0%
帮助的人:0
展开全部
解:设首项为a1,公比为q(q>1)
所以a1*q+a1*q^2+a1*q^3=28
a1*q+a1*q^3=2*(a1*q^2+2)
联立解得:a1=2 q=2
所以 an=2^n
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式