如何证明(1+1/n)^n 当n趋向无穷大时,极限存在

我看到书上说这用到一个原则即单调的有界函数存在极限但却没有证明过程希望有数学高手帮助解答谢谢考虑到本人的领悟能力希望过程详细... 我看到书上说这用到一个原则即单调的有界函数存在极限
但却没有证明过程希望有数学高手帮助解答谢谢
考虑到本人的领悟能力希望过程详细
展开
 我来答
百度网友ed5a811
2006-07-14 · TA获得超过3734个赞
知道小有建树答主
回答量:1037
采纳率:0%
帮助的人:1120万
展开全部
首先需要二项式定理:

(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)

用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
 a+b
 故此,n=1时,式一成立。

设n1为任一自然数,假设n=n1时,(式一)成立 ,即:

(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)

则,当n=n1+1时:

式二两端同乘(a+b)

[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)

=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)

因此二项式定理(即式一成立)

下面用二项式定理计算这一极限:

(1+1/n)^n (式一)

用二项式展开得:

(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n

由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0。因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1。余下分母。于是式一化为:

(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n! (式二)

当n -> +∞时,你可以用计算机,或笔计算此值。这一数值定义为e。

补充:

将式二和公比为1/2的等比数列比较,其每一项都小于此等比数列,而此等比数列收敛,因此,式二必定收敛于一固定数值。
TableDI
2024-07-18 广告
仅需3步!不写公式自动完成Excel vlookup表格匹配!Excel在线免,vlookup工具,点击16步自动完成表格匹配,无需手写公式,免费使用!... 点击进入详情页
本回答由TableDI提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式