1.△ABC是等边三角形,点D,E,F分别是线段AB,BC,CA上的点...

1.如图4-1,△ABC是等边三角形,点D,E,F分别是线段AB,BC,CA上的点;(1)若AD=BE=CF,问△DEF是等边三角形?试说明你的结论;(2)若△DEF是等... 1.如图4-1,△ABC是等边三角形,点D,E,F分别是线段AB,BC,CA上的点;
(1)若AD=BE=CF,问△DEF是等边三角形?试说明你的结论;
(2)若△DEF是等边三角形,问AD=BE=CF成立吗?是说明你的结论。

图在空间!
展开
我不是他舅
2009-05-06 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.9亿
展开全部
BD=AB-AD
AB=AC,AD=CF
所以BD=AC=CF=AF
三角形ADE和BED中
AD=BE,AF=BD
角A=B=60
所以全等
所以DF=DE
同理,DF=EF
所以DE=DF=EF
是等边三角形

若△DEF是等边三角形
角FDE=60
所以角ADF+BDE=180-60=120
三角形BDE中,B=60
所以角BED+BDE=120
所以角BED=ADF
角A=B=60
DF=DE
所以三角形ADE和BED全等
所以AD=BE
同理BE=CF
所以AD=BE=CF
哈特freelife
2012-10-14 · TA获得超过144个赞
知道答主
回答量:79
采纳率:0%
帮助的人:34.1万
展开全部
(1)
证明:
∵⊿ABC是等边三角形
∴AB=BC=AC,∠A=∠B=∠C=60º
∵AD=BE=CF
∴AB-AD=BC-BE=AC-CF
即BD=CE=AF
在⊿ADF和⊿BDE中
AD=BE,∠A=∠B,AF=BD
∴⊿ADF≌⊿BED(SAS)
∴DF=DE
同理:
⊿ADF≌⊿CFE
∴DF=EF
∴DF=EF=DE
∴⊿DEF是等边三角形
(2)
∵⊿DEF是等边三角形
∴DE=EF=DF,∠DEF=∠EFD=∠EDF=60º
在⊿BDE和⊿CEF中
∵∠DEB+∠CEF=180º-∠DEF=120º
∠DEB+∠BDE=180º-∠B=120º
∴∠BDE=∠CEF
又∵∠B=∠C,DE=EF
∴⊿BDE≌⊿CEF(AAS)
∴BE =CF
同理:
⊿ADF≌⊿BED
∴AD=BE
∴AD=BE=CF
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式