
设常数a>=0,函数f(x)=x-lnx^2+2alnx-1(x属于(0,正无穷)),求证:当x>1时,恒有x>lnx^2-2alnx+1
1个回答
展开全部
证明f(x)在x>1的情况下单调递增即可,那么f(x)>f(1)=0,证明单调性,求导,然后当x>1时,恒有导数大于0,那么就证明f(x)在x>1时单调递增,也就证明了……
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
0/200