求近似数时,保留一位小数,表示精确到十分位,就是省略十分位后面的尾数,就要把第()位数省略。
第二、三位小数省略。
求近似数时:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位,保留三位小数,表示精确到千分位…………
如:小豆豆身高0.984米。
求:1、要保留两位小数:
保留两位小数需要看数字的千分位,如果千分位的数字小于5,则不需要进1,若万分位的数字大于5,则需要进1。
扩展资料
四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。
从统计学的角度,"四舍六入五成双"比"四舍五入"要科学,它使舍入后的结果有的变大,有的变小,更平均。而不是像四舍五入那样逢五就入,导致结果偏向大数。
第二、三位小数省略。
求近似数时:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
如:小豆豆身高0.984米。
求:1、要保留两位小数:
如果保留两位小数,就要第三位数省略。
扩展资料:
近似数的运算法则:
1、加法减法
在通常情况下,近似数相加减,精确度最低的一个已知数精确到哪一位,和或者差也至多只能精确到这一位。例如,一个同学前一年体重30.4千克,第二年体重比前一年增加了3.18千克。求第二年体重时要把这两个近似数加起来。因为30.4只精确到十分位,比3.18的精确度(精确到百分位)低,所以加得的和最多也只能精确到十分位。
为了容易看出计算结果的可靠程度,我们在竖式中每一个加数末尾添上一个“?”,用来表示被截去的数字。
2、乘法除法
在通常情况下,近似数相乘除,有效数字最少的一个已知数有多少个有效数字,积或者商也至多只能有同样多个有效数字。
例如,近似数9.04和4.3相乘,从竖式中看到,积里只有前两位数字是确定的,就是说只能有两位有效数字。这和第二个因数的有效数字的个数相同。
参考资料来源:百度百科-近似数