谁能给我几道二元一次方程组应用题,越多越好
展开全部
说明:本文适合八年级二元一次方程组的应用复习
列方程解应用题一直是考试竞赛的热门题型之一,而利用二元一次方程组解应用题更是八年级上学期学习的重点。本文试以几道2005年的中考题为例,谈谈中考题中列二元一次方程组解应用题考察的几种方式。
一、直接列方程组解应用题
例一:(2005年北京市人教)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。求只将温度调高1℃后两种空调每天各节电多少度?
分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量。相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405。甲种空调每天节电x度,乙种空调每天节电y度,根据前第二个和第三个相等关系可以表示出另外两个未知量,然后根据第一个和第四个相等关系列出两个二元一次方程组成方程组即可。
解:设只将温度调高1℃后,甲种空调每天节电x度,乙种空调每天节电y度
依题意,得:
解得:
答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
二、利用二元一次方程求线段长
例二:(2005年北京市丰台区)用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽。
分析:本题的未知量有两个,就是每块地砖的长和宽,根据矩形长为60可得一个方程,由于矩形的上下两个对边相等,所以又能得到一个方程,从而组成一个方程组。
解:设每块地砖的长与宽分别为x和y,根据题意得:
解得:
答:每块地砖的长为45,宽为15。
三、利用二元一次方程组解信息题
例三:(2005年日照市)市政府根据社会需要,对自来水价格举行了听证会,决定从今年4月份起对自来水价格进行调整. 调整后生活用水价格的部分信息如下表:
用水量(m3) 单价(元/m3)
5m3以内(包括5m3)的部分 2
5m3以上的部分 x
已知5月份小晶家和小磊家分别交水费19元、31元,且小磊家的用水量是小晶家的用水量的1.5倍.
请你通过上述信息,求出表中的x.
分析:通过小晶家和小磊家所交的水费可知,他们两家用水量都超过5 m3,而且用水量不知,因此我们先设小晶家5月份用水y m3,则小磊家5月份用水1.5y m3。可列方程组 ,这实际上是一个关于xy和x的二元一次方程组,可以解得 ,进而解得 。
四、利用二元一次方程解不等关系
例四:(2005年湖州市)某高速公路收费站,有m(m>0)辆汽车排队等候收费通过。假设通过收费站的车流量(每分钟通过的汽车数量)保持不变,每个收费窗口的收费检票的速度也是不变的。若开放一个收费窗口,则需20分钟才可能将原来排队等候的汽车以及后来接上来的汽车全部收费通过;若同时开放两个收费窗口,则只需8分钟也可将原来排队等候的汽车以及后来接上来的汽车全部收费通过。若要求在3分钟内将排队等候收费的汽车全部通过,并使后来到站的汽车也随到随时收费通过,请问至少要同时开放几个收费窗口?
分析:本题有三个未知量:每分钟可收费通过的汽车辆数、每分钟的车流量、需要开放的收费窗口数,而相等关系只有两个,那就是“若开放一个收费窗口,则需20分钟才可能将原来排队等候的汽车以及后来接上来的汽车全部收费通过;若同时开放两个收费窗口,则只需8分钟也可将原来排队等候的汽车以及后来接上来的汽车全部收费通过。” 题目中还有一个不等关系,那就是:“要求在3分钟内将排队等候收费的汽车全部通过,并使后来到站的汽车也随到随时收费通过”,因此我们可以列出一个由两个二元一次方程和一个一元一次不等式组成的组合。由两个方程解出两个未知数的值,最后代入不等式,求出收费窗口数的取值范围。
解:设每个收费窗口每分钟可收费通过x辆汽车,每分钟的车流量为y辆,又设需要开放n个收费窗口,才能在3分钟内将排队等候的汽车全部收费通过,根据题意得:
由①、②可得: , ④
将④代入③得:
∵ m > 0,∴n ≥ ,n取最小正整数,∴ n = 5
答:至少要开放5个收费窗口。
五、利用二元一次方程解决一次函数问题
例五:(2005年黑龙江)某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:
(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;
(2)求注水多长时间甲、乙两个蓄水池水的深度相同;
(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.
分析:(1)我们可以设y甲=k1x+b1.把(O,2)和(3,0)代人,解得kl=-23,bl=2,∴ y甲=-23x+2,设y乙=k2x+b2. 把(0,1)和(3,4)代入, 解得k2=1,b2=1,∴ y乙=x+1
(2)要求甲、乙两个蓄水池水的深度相同,实际上是求两个一次函数的交点坐标,将两个一次函数联立起来组成一个二元一次方程组,方程组的解就是两个一次函数的交点坐标。方程组为: 解得x=35.所以注水35小时甲、乙两个蓄水池中水的深度相同
(3)我们可设甲蓄水池的底面积为S1,乙蓄水池的底面积为S2,t小时甲、乙两个蓄水池的蓄水量相同.根据题意,得2Sl=3×6, (4-1)S2=3×6,从而解得Sl=9、
S2=6,又因为S1(-23t+2)=S2(t+1),所以解得t=1。从而 注水1小时甲、乙两个蓄水池的蓄水量相同
列方程解应用题一直是考试竞赛的热门题型之一,而利用二元一次方程组解应用题更是八年级上学期学习的重点。本文试以几道2005年的中考题为例,谈谈中考题中列二元一次方程组解应用题考察的几种方式。
一、直接列方程组解应用题
例一:(2005年北京市人教)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。求只将温度调高1℃后两种空调每天各节电多少度?
分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量。相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405。甲种空调每天节电x度,乙种空调每天节电y度,根据前第二个和第三个相等关系可以表示出另外两个未知量,然后根据第一个和第四个相等关系列出两个二元一次方程组成方程组即可。
解:设只将温度调高1℃后,甲种空调每天节电x度,乙种空调每天节电y度
依题意,得:
解得:
答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
二、利用二元一次方程求线段长
例二:(2005年北京市丰台区)用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽。
分析:本题的未知量有两个,就是每块地砖的长和宽,根据矩形长为60可得一个方程,由于矩形的上下两个对边相等,所以又能得到一个方程,从而组成一个方程组。
解:设每块地砖的长与宽分别为x和y,根据题意得:
解得:
答:每块地砖的长为45,宽为15。
三、利用二元一次方程组解信息题
例三:(2005年日照市)市政府根据社会需要,对自来水价格举行了听证会,决定从今年4月份起对自来水价格进行调整. 调整后生活用水价格的部分信息如下表:
用水量(m3) 单价(元/m3)
5m3以内(包括5m3)的部分 2
5m3以上的部分 x
已知5月份小晶家和小磊家分别交水费19元、31元,且小磊家的用水量是小晶家的用水量的1.5倍.
请你通过上述信息,求出表中的x.
分析:通过小晶家和小磊家所交的水费可知,他们两家用水量都超过5 m3,而且用水量不知,因此我们先设小晶家5月份用水y m3,则小磊家5月份用水1.5y m3。可列方程组 ,这实际上是一个关于xy和x的二元一次方程组,可以解得 ,进而解得 。
四、利用二元一次方程解不等关系
例四:(2005年湖州市)某高速公路收费站,有m(m>0)辆汽车排队等候收费通过。假设通过收费站的车流量(每分钟通过的汽车数量)保持不变,每个收费窗口的收费检票的速度也是不变的。若开放一个收费窗口,则需20分钟才可能将原来排队等候的汽车以及后来接上来的汽车全部收费通过;若同时开放两个收费窗口,则只需8分钟也可将原来排队等候的汽车以及后来接上来的汽车全部收费通过。若要求在3分钟内将排队等候收费的汽车全部通过,并使后来到站的汽车也随到随时收费通过,请问至少要同时开放几个收费窗口?
分析:本题有三个未知量:每分钟可收费通过的汽车辆数、每分钟的车流量、需要开放的收费窗口数,而相等关系只有两个,那就是“若开放一个收费窗口,则需20分钟才可能将原来排队等候的汽车以及后来接上来的汽车全部收费通过;若同时开放两个收费窗口,则只需8分钟也可将原来排队等候的汽车以及后来接上来的汽车全部收费通过。” 题目中还有一个不等关系,那就是:“要求在3分钟内将排队等候收费的汽车全部通过,并使后来到站的汽车也随到随时收费通过”,因此我们可以列出一个由两个二元一次方程和一个一元一次不等式组成的组合。由两个方程解出两个未知数的值,最后代入不等式,求出收费窗口数的取值范围。
解:设每个收费窗口每分钟可收费通过x辆汽车,每分钟的车流量为y辆,又设需要开放n个收费窗口,才能在3分钟内将排队等候的汽车全部收费通过,根据题意得:
由①、②可得: , ④
将④代入③得:
∵ m > 0,∴n ≥ ,n取最小正整数,∴ n = 5
答:至少要开放5个收费窗口。
五、利用二元一次方程解决一次函数问题
例五:(2005年黑龙江)某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:
(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;
(2)求注水多长时间甲、乙两个蓄水池水的深度相同;
(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.
分析:(1)我们可以设y甲=k1x+b1.把(O,2)和(3,0)代人,解得kl=-23,bl=2,∴ y甲=-23x+2,设y乙=k2x+b2. 把(0,1)和(3,4)代入, 解得k2=1,b2=1,∴ y乙=x+1
(2)要求甲、乙两个蓄水池水的深度相同,实际上是求两个一次函数的交点坐标,将两个一次函数联立起来组成一个二元一次方程组,方程组的解就是两个一次函数的交点坐标。方程组为: 解得x=35.所以注水35小时甲、乙两个蓄水池中水的深度相同
(3)我们可设甲蓄水池的底面积为S1,乙蓄水池的底面积为S2,t小时甲、乙两个蓄水池的蓄水量相同.根据题意,得2Sl=3×6, (4-1)S2=3×6,从而解得Sl=9、
S2=6,又因为S1(-23t+2)=S2(t+1),所以解得t=1。从而 注水1小时甲、乙两个蓄水池的蓄水量相同
展开全部
x2-4x+3=0
x2-5x+4=0
x2-6x+8=0
x2+2x-3=0
x2+3x-4=0
x2+4x+4=0
x2-5x+4=0
x2-6x+8=0
x2+2x-3=0
x2+3x-4=0
x2+4x+4=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
例1. 某单位外出参观.若每辆汽车坐45人,那么15人没有座位;若每辆汽车坐 60人,则恰好空出一辆汽车,问共需几辆汽车,该单位有多少人? 思考如下: (1)题目中的已知条件是什么? (2)“有人没有座位”是指什么意思?“有空座位”是指什么意思?3.基于上述分析,那么已知条件“每辆车坐45人,15人没有座位”可理解成什么?“每辆车坐60人,恰好空出一辆车”又可理解成什么? 解:设该单位共有x辆车,y个人.依题意,得 解这个方程组,得 答:该单位共有5辆车,240人. 例2.汽车从甲地到乙地,若每小时行驶45千米,就要延误小时到达;若每小时行驶50千米,就可以提前小时到达。求甲、乙两地间的距离及原计划行驶的时间。 思考问题: (1)路程、速度、时间三者关系是什么? (2)本题中的“延误”和“提前”都是以什么为标准的? (3)基于上述分析,那么已知条件“汽车每小时行使45千米,则要延误小时到达目的地”可理解成什么?已知条件“若每小时行使50千米,就可以提前小时到达目的地”又可理解成什么? 解:设甲、乙两地的距离为x千米,原计划行驶时间为y小时.依题意,得 解这个方程组,得 答:甲、乙两地间的距离是450千米,原计划行使时间为小时。 例3. 甲、乙两人从相距36千米的两地同时相向出发,经过4小时30分钟相遇,如果乙先走2小时,然后甲再出发,这样甲经过3小时40分钟与乙相遇,求甲、乙两人的速度。 分析:此题是行程问题中的相遇问题。题中有两个未知量:甲、乙两人的速度。 有两个等量关系: (1)甲、乙二人4小时所走的路程=36千米; (2)甲3小时所走的路程+乙(2+3)小时走的路程=36千米。 解:设甲、乙二人的速度分别为x千米/时,y千米/时。 根据题意,得 整理此方程组,得 解这个方程组,得 。 答:甲、乙二人的速度分别为4千米/时和3千米/时。 例4. 甲、乙两人在周长是400米的环形跑道上散步.若两人从同地同时背道而行,则经过2分钟就相遇.若两人从同地同时同向而行,则经过20分钟后两人相遇.已知甲的速度较快,求二人散步时的速度.(只列方程,不求出) 分析:这个问题是环形线上的相遇、追及问题.其中有两个未知数:甲、乙二人各自的速度.有两个相等关系,即 (1)背向而行:两次相遇间甲、乙的行程之和=400米; (2)同向而行:两次相遇间甲、乙的行程之差=400米. 解:设甲人速度为每分钟x米,乙人速度为每分钟行走y米.依题意,得 例5. 某纸品厂加工甲、乙二种无盖的长方体小盒如图(1),利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等,如图(2)。现将150张正方形硬纸片和300张长方形硬纸片全部用于制作这两种小盒,可以做成甲、乙两种小盒各多少个? 解: 法(一) 设可以制作甲种小盒x个,乙种小盒y个 根据题意列出方程组 解得: 答:可以制作甲种小盒30个,乙种小盒60个。 解:法(二) 设制作甲种小盒用去x张正方形硬纸片,制作乙种小盒用去y张正方形硬纸片,那么可制作甲种小盒x个,乙种小盒 根据题意列出方程组: 解得: 答:可以制作甲种小盒30个,乙种小盒60个。 四、如何设未知数 列方程解应用题的第一步是设未知数,设未知数的方法很多,有时可直接设所求量为未知数,有时应间接地设未知数,还有的时候需要增设辅助未知数.那么,如何巧设未知数,以达到迅速解题的目的呢? 直接设所求量为未知数 例1. A,B两地相距 20千米.甲、乙两人分别从A,B两地同时相向而行,两小时后在途中相遇,然后甲返回A地,乙仍继续前进,当甲回到A地时,乙离A地还有2千米.求甲、乙的速度. 分析:这个问题是直线行驶中的相遇、追及问题.其中设两个未知数:甲、乙各自的速度,有两个相等关系. 解:设甲人的速度是每小时行x千米,乙人的速度是每小时y千米.依题意,得 解这个方程组,得 合理选择,间接设元 许多同学在解应用题时只考虑题目要求什么就设什么为未知数.这种方法有时很难寻找已知量与未知量之间的相等关系.因此,我们应根据题目条件选择与要求的未知量有关的某个量为未知数,以便找出符合题意的相等关系,从而达到解题的目的. 例2. 从夏令营到学校,先下山然后走平路,某同学先骑自行车以每小时12千米的速度下山,而以每小时9千米的速度通过平路,到达学校共用55分钟,他回来的时候以每小时8千米的速度通过平路而以每小时4千米的速度上山回到夏令营用了1小时。从夏令营到学校有多少千米? 分析:根据题设条件,若设山路长为未知数x,则由来回的平路长相等得方程: 9; 同样可设平路长为未知数,由来回山路长相等得方程 12 还可设山路长和平路长分别为x千米,y千米,由来回的时间关系建立二元一次方程组 或设下山和上山的时间分别为x小时,y小时.由来回山路长和平路长分别相等得到二元一次方程组 设而不求,巧用辅助量 当应用题中涉及的量较多,各个量之间的关系又不明显时,可适当地增设辅助未知数,目的不是要具体地求出它们的值,而是以此作桥梁,沟通各个数量之间的关系,为列方程(组)创造条件.在解题过程中需将辅助未知数消去,以便求出所需未知数的值. 例1. 一客轮逆水行驶,船上一乘客掉了一件物品,浮在水面上,等乘客发现后,轮船立即掉头去追,已知轮船从掉头到追上共用5分钟,问乘客丢失了物品,是几分钟后发现的? 解 设x分钟后发现掉了物品,船静水速为V1,水速为V2,由题意得 (x+5)V2+x(V1-V2)=5(V1+V2), xV2+5V2+xV1-xV2=5V1+5V2, xV1=5V1, ∵ V1≠0,∴ x=5. 答:乘客5分钟后发现掉了物品. 注:这里的辅助未知数是V1和V2. 例2. 一只船发现漏水时,已进了一些水,现水匀速进入船内.如果10人淘水,3小时可淘完,5人淘水8小时淘完,如果2小时淘完水,需要多少人淘水. 解 设2小时淘完水需x人,一人淘水量为y,每小时进水量为z,再设原进水量为a,由题意得 (2)-(1)得5z=10y,z=2y,(4) (2)-(3)得6z=2y(20-x),(5) 把(4)代入(5)得6×2y=2y(20-x), 解得x=14. 答:2小时淘完水需14人. 注:这里的y,z,a是设而不求的辅助未知数. 例3. 甲班与乙班共83人,乙班与丙班共86人,丙班与丁班共88人,问甲班和丁班共多少人? (首届“华罗庚金杯”少年数学邀请赛试题) 解 设甲、乙、丙、丁班各有人数a、b、c、d,由题意得 (1)-(2)+(3)得 a+d=85人. 答:甲班和丁班共有85人. 例4.一只小船顺流航行从甲码头到乙码头需a小时,逆流航行这段路程需b小时,那么一木块顺水漂流这段路程需____小时. (武汉市初二数学竞赛试题) 解:设甲、乙两个码头的距离是S公里,小船在静水中的速度为x公里/小时,水流速度为y公里/小时,依题意得 即 由(1)-(2)得 ∴ 答:一木块顺水漂流这段路程需小时。 例5.有一片牧场,草每天都在均匀地生长(草每天增长的量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,设每头牛吃草的量相等: (1)如果放牧16头牛,几天可以吃完牧草? (2)要使牧草永远吃不完,至多放牧几头牛? 解:(1)设这片牧场原有草量为a,每天生长的量为b,每头牛每天吃草量为c,16头牛在x天内可以吃完牧草,则 由(2)-(1)得b=12c (4) 由(3)-(2)得(16x-168)c=(x-8)b (5) 将(4)代入(5)得x=18. (2)设至多放牧y头牛,牧草才永远吃不完,由即 答:如果放牧16头牛,18天可以吃完牧草,要使牧草永远吃不完,至多放牧12头牛.
初一数学周末练习14(二元一次方程组的应用) 撰稿:董萍 审稿:郭伦 责编:孙景艳周末练习: 1.某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(一张方桌有一个桌面,4条桌腿). 2.某校为七年级学生安排宿舍,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住4人,且空两间宿舍,求该年级寄宿生人数及宿舍间数. 3.已知一铁路桥长1000m,现有一列火车从桥上通过,测得从火车开始上桥到车身过完共用1min,整列火车完全在桥上的时间为40s,求火车的速度及火车的长度. 4.一项工程,甲队独做要12天完成,乙队独做要15天完成,丙队独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲乙两队先合作若干天,以后为加快速度,丙队也同时加入了这项工作,这样比原定时间提前一天完成任务.问甲乙两队合作了多少天?丙队加入后又做了多少天? 5.已知一个两位数,它的十位上的数字与个位上的数字和是3.若颠倒个位与十位数字的位置,得到的新数比原数小9,求这个两位数. 6.有两个长方形,第一个长方形的长与宽之比为5:4,第二个长方形的长与宽之比为3:2,第一个长方形的周长比第二个长方形的周长大112,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积. 7.甲乙两厂计划在上月共生产机床360台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产了机床400台.问:上月两个厂各超额生产了机床多少台? 8.王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%, 乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗? 9.星期天,七年级1、2两班部分同学相约去某公园玩碰碰车或划船.已知玩碰碰车的同学每人租用一辆车,划船的同学每4人合租一条船,两班各花了115元.活动人数如下表:
班级 玩碰碰车的同学 划船的同学
1 11人 16人
2 8人 20人
试求碰碰车每辆车租金多少元;游船每条船租金多少元. 10.某中学准备改造面积为的旧操场,现有甲、乙两个工程队都想承建这项工程.经协商后得知,甲工程队单独改造这操场比乙工程队多用9天;乙工程队每天比甲工程队多改造;甲工程队每天所需费用160元,乙工程队每天所需费用200元. (1)求甲乙两个工程队每天各改造操场多少平方米? (2)在改造操场的过程中,学校要委派一名管理人员进行质量监督,并由学校负担他每天25元的生活 补助费,现有以下三种方案供选择. 第一种方案:由甲单独改造; 第二种方案:由乙单独改造; 第三种方案:由甲、乙一起同时进行改造; 你认为哪一种方案既省时又省钱?试比较说明.参考答案: 1.6立方米木材做桌面,4立方米木材做桌腿,可生产300张方桌。 2.94人,18间宿舍。 3.火车速度:20,火车长:200m 4.甲乙合作了:4天,丙加入又做了:2天。 5.21 6. 7.甲超额生产:24台,乙超额生产:16台。 8.甲:32件,乙:18件 9.碰碰车每辆租金:5元,游船每辆租金:15元。 10.(1)甲:30(),乙:40()。 (2)方案1:6660元,方案2:6075元,方案3:5940元。方案3既省时又省钱。
初一数学周末练习14(二元一次方程组的应用) 撰稿:董萍 审稿:郭伦 责编:孙景艳周末练习: 1.某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(一张方桌有一个桌面,4条桌腿). 2.某校为七年级学生安排宿舍,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住4人,且空两间宿舍,求该年级寄宿生人数及宿舍间数. 3.已知一铁路桥长1000m,现有一列火车从桥上通过,测得从火车开始上桥到车身过完共用1min,整列火车完全在桥上的时间为40s,求火车的速度及火车的长度. 4.一项工程,甲队独做要12天完成,乙队独做要15天完成,丙队独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲乙两队先合作若干天,以后为加快速度,丙队也同时加入了这项工作,这样比原定时间提前一天完成任务.问甲乙两队合作了多少天?丙队加入后又做了多少天? 5.已知一个两位数,它的十位上的数字与个位上的数字和是3.若颠倒个位与十位数字的位置,得到的新数比原数小9,求这个两位数. 6.有两个长方形,第一个长方形的长与宽之比为5:4,第二个长方形的长与宽之比为3:2,第一个长方形的周长比第二个长方形的周长大112,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积. 7.甲乙两厂计划在上月共生产机床360台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产了机床400台.问:上月两个厂各超额生产了机床多少台? 8.王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%, 乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗? 9.星期天,七年级1、2两班部分同学相约去某公园玩碰碰车或划船.已知玩碰碰车的同学每人租用一辆车,划船的同学每4人合租一条船,两班各花了115元.活动人数如下表:
班级 玩碰碰车的同学 划船的同学
1 11人 16人
2 8人 20人
试求碰碰车每辆车租金多少元;游船每条船租金多少元. 10.某中学准备改造面积为的旧操场,现有甲、乙两个工程队都想承建这项工程.经协商后得知,甲工程队单独改造这操场比乙工程队多用9天;乙工程队每天比甲工程队多改造;甲工程队每天所需费用160元,乙工程队每天所需费用200元. (1)求甲乙两个工程队每天各改造操场多少平方米? (2)在改造操场的过程中,学校要委派一名管理人员进行质量监督,并由学校负担他每天25元的生活 补助费,现有以下三种方案供选择. 第一种方案:由甲单独改造; 第二种方案:由乙单独改造; 第三种方案:由甲、乙一起同时进行改造; 你认为哪一种方案既省时又省钱?试比较说明.参考答案: 1.6立方米木材做桌面,4立方米木材做桌腿,可生产300张方桌。 2.94人,18间宿舍。 3.火车速度:20,火车长:200m 4.甲乙合作了:4天,丙加入又做了:2天。 5.21 6. 7.甲超额生产:24台,乙超额生产:16台。 8.甲:32件,乙:18件 9.碰碰车每辆租金:5元,游船每辆租金:15元。 10.(1)甲:30(),乙:40()。 (2)方案1:6660元,方案2:6075元,方案3:5940元。方案3既省时又省钱。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询