设正实数a.b.c,满足a小于等于b小于等于c,a平方+b平方+c平方等9.证明abc+1大于3a
1个回答
展开全部
证明:因为2bc=b^2+c^2-(c-b)^2,所以在a固定的时候(c-b)^2越大则bc越小,因为a≤b≤c,所以当b=a,c²=9-2a²时bc有最小值,即bc≥a√9-2a²,于是abc+1≥1+a²√9-2a²,若a√9-2a²≥3,则abc+1≥1+a²√9-2a²≥1+3a>3a,命题显然成立,若a√9-2a²<3,即a²(9-2a²)<9,则a²>3或a²<3/2,但9=a²+b²+c²≥3a²,即有a²≤3,于是只能取a²<3/2,于是√9-2a²>√6,于是abc+1≥1+a²√9-2a²>1+√6a²≥2*[(6)^1/4]a>3a(因为96>81),即a√9-2a²<3时命题也成立,于是命题成立,证毕。
祝愉快O(∩_∩)O~
祝愉快O(∩_∩)O~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询