急急急急急急…高一数学题
一、已知sinA+cosA=1/5求A属于(0,180度),cosA求tanA和sin^6A+cos^6A二、已知三角形ABC中,A,B,C为内角证明(1)cosA=-c...
一、已知sinA+cosA=1/5求A属于(0,180度),cosA求tanA和sin^6A+cos^6A 二、已知三角形ABC中,A,B,C为内角证明(1)cosA=-cos(B+C),(2)sin((B+C)/2)=cos(A/2) 三、求sin^2 1度+sin^2 2度+sin^2 3度+…sin^2 89度 (手机提问的,题打的不好,望谅解,谢谢)
展开
展开全部
解:
一.
由于sinA+cosA=1/5
且A属于(0,180度)
故A属于(90度,180度)
又sin^2 A+cos^2 A=1
则:sinA=4/5,cosA=-3/5
则:tanA=sinA/cosA=-4/3
sin^6(A)+cos^6(A)
=[sin^2(A)+cos^2(A)]*[sin^4(A)+cos^4(A)-sin^2(A)cos^2(A)]
=1*[(4/5)^4+(-3/5)^4-(4/5)^2*(-3/5)^2]
=193/625
二.
由于A,B,C为三角形ABC内角
则:A+B+C=兀
则:
cosA=cos[兀-(B+C)]
=-cos(B+C)
sin[(B+C)/2]
=sin[(兀-A)/2]
=cos(A/2)
三.
sin^2(1)+sin^2(2)+sin^2(3)+…+sin^2(89)
=sin^2(1)+sin^2(2)+...+sin^2[pi/2-2]+sin^2[pi/2-1]
=sin^2(1)+sin^2(2)+...+cos^2(2)+cos^2(1)
=[sin^2(1)+cos^2(1)]+[sin^2(2)+cos^2(2)]+...+sin^2(45)
=1+1+...+1+1/2
=89/2
一.
由于sinA+cosA=1/5
且A属于(0,180度)
故A属于(90度,180度)
又sin^2 A+cos^2 A=1
则:sinA=4/5,cosA=-3/5
则:tanA=sinA/cosA=-4/3
sin^6(A)+cos^6(A)
=[sin^2(A)+cos^2(A)]*[sin^4(A)+cos^4(A)-sin^2(A)cos^2(A)]
=1*[(4/5)^4+(-3/5)^4-(4/5)^2*(-3/5)^2]
=193/625
二.
由于A,B,C为三角形ABC内角
则:A+B+C=兀
则:
cosA=cos[兀-(B+C)]
=-cos(B+C)
sin[(B+C)/2]
=sin[(兀-A)/2]
=cos(A/2)
三.
sin^2(1)+sin^2(2)+sin^2(3)+…+sin^2(89)
=sin^2(1)+sin^2(2)+...+sin^2[pi/2-2]+sin^2[pi/2-1]
=sin^2(1)+sin^2(2)+...+cos^2(2)+cos^2(1)
=[sin^2(1)+cos^2(1)]+[sin^2(2)+cos^2(2)]+...+sin^2(45)
=1+1+...+1+1/2
=89/2
展开全部
1.3略
2.2
4.a3+a7=2a5,a5=a1+4d=-3,d=2,Sn=na1+n(n-1)d/2=n^2-13n=(n-13/2)^2-...
故Sn取最小值时,n=6或n=7
5.a2-a1=a1+7=-1-a2,a1=-5,a2=-3,a2-a1=2
b2^2=b1b3=(-4)*(-1)=4,b2=2(舍掉)或b2=-2
故(a2-a1)/b2=-1
6.
7.a,b,c是等差数列故2b=a+c,4b^2=a^2+c^2+2ac,a^2+c^2=4b^2-2ac
cosB=(a^2+c^2-b^2)/2ac=(3b^2-2ac)/2ac=√
3/2(1)
又S=acsinB/2=3/2,ac=6代入(1)b=√(4+2√3)
8.an=Sn-S(n-1)=3^n-2-[3^(n-1)-2]=2*3^(n-1)
9.sin50(1+√3tan10)
=sin50(1+tan60tan10)
=sin50[(tan60-tan10)/tan(60-10)]
=sin50[(sin60/cos60-sin10/cos10)/(sin50/cos50)]
=cos50[(sin60cos10-cos60sin10)/(cos10cos60)]
=cos50*sin(60-10)/(cos10/2)
=2cos50sin50/cos10
=sin100/cos10
=sin80/cos10
=1
10.根据余弦定理:
cosA=(b^2+c^2-a^2)/2bc=bc/2bc=1/2,故A=60
由正弦定理有a/sinA=b/sinB有:
√3/(√3/2)=b/sinx=c/sinC=c/sin(60+x)
b=2sinx,c=2sin(60+x)
y=f(x)=a+b+c=√3+2[sinx+sin(60+x)]
=√3+2sin(x+30)cos30
=√3+√3sin(x+30)
故f(x)max=2√3
6题里bn=Abn-1还是bn=Ab(n-1)?
2.2
4.a3+a7=2a5,a5=a1+4d=-3,d=2,Sn=na1+n(n-1)d/2=n^2-13n=(n-13/2)^2-...
故Sn取最小值时,n=6或n=7
5.a2-a1=a1+7=-1-a2,a1=-5,a2=-3,a2-a1=2
b2^2=b1b3=(-4)*(-1)=4,b2=2(舍掉)或b2=-2
故(a2-a1)/b2=-1
6.
7.a,b,c是等差数列故2b=a+c,4b^2=a^2+c^2+2ac,a^2+c^2=4b^2-2ac
cosB=(a^2+c^2-b^2)/2ac=(3b^2-2ac)/2ac=√
3/2(1)
又S=acsinB/2=3/2,ac=6代入(1)b=√(4+2√3)
8.an=Sn-S(n-1)=3^n-2-[3^(n-1)-2]=2*3^(n-1)
9.sin50(1+√3tan10)
=sin50(1+tan60tan10)
=sin50[(tan60-tan10)/tan(60-10)]
=sin50[(sin60/cos60-sin10/cos10)/(sin50/cos50)]
=cos50[(sin60cos10-cos60sin10)/(cos10cos60)]
=cos50*sin(60-10)/(cos10/2)
=2cos50sin50/cos10
=sin100/cos10
=sin80/cos10
=1
10.根据余弦定理:
cosA=(b^2+c^2-a^2)/2bc=bc/2bc=1/2,故A=60
由正弦定理有a/sinA=b/sinB有:
√3/(√3/2)=b/sinx=c/sinC=c/sin(60+x)
b=2sinx,c=2sin(60+x)
y=f(x)=a+b+c=√3+2[sinx+sin(60+x)]
=√3+2sin(x+30)cos30
=√3+√3sin(x+30)
故f(x)max=2√3
6题里bn=Abn-1还是bn=Ab(n-1)?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询