
求函数y=(1/4)^x-(1/2)^x+1,x∈[-3,2]的单调区间
2个回答
展开全部
x∈[-3,2]
则8≥(1/2)^x≥1/4.
y=(1/4)^x-(1/2)^x+1
=[(1/2)^x]^2-(1/2)^x+1
=[(1/2)^x - 1/2]^2+1-1/4
=[(1/2)^x - 1/2]^2+3/4.
则当(1/2)^x=1/2,即x=1时,y最小.
则:x∈[-3,1]时,函数y=(1/4)^x-(1/2)^x+1单调递减.
x∈(1,2]时,函数y=(1/4)^x-(1/2)^x+1单调递增
则8≥(1/2)^x≥1/4.
y=(1/4)^x-(1/2)^x+1
=[(1/2)^x]^2-(1/2)^x+1
=[(1/2)^x - 1/2]^2+1-1/4
=[(1/2)^x - 1/2]^2+3/4.
则当(1/2)^x=1/2,即x=1时,y最小.
则:x∈[-3,1]时,函数y=(1/4)^x-(1/2)^x+1单调递减.
x∈(1,2]时,函数y=(1/4)^x-(1/2)^x+1单调递增
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询