2个回答
展开全部
用差分计算,当自变量趋于0时,前后两次差分收敛到需要精度,计算结束。
例如,一阶导数,写一个 函数 y = f(x):
float f(float x){ ...}
设 dx 初值
计算 dy
dy = f(x0) - f(x0+dx);
导数 初值
dd1=dy/dx;
Lab:;
dx = 0.5 * dx; // 减小步长
dy = f(x0) - f(x0+dx);
dd2=dy/dx; // 导数 新值
判断新旧导数值之差是否满足精度,满足则得结果,不满足则返回
if ( fabs(dd1-dd2) < 1e-06 ) { 得结果dd2...}
else { dd1=dd2;goto Lab;};
例如,一阶导数,写一个 函数 y = f(x):
float f(float x){ ...}
设 dx 初值
计算 dy
dy = f(x0) - f(x0+dx);
导数 初值
dd1=dy/dx;
Lab:;
dx = 0.5 * dx; // 减小步长
dy = f(x0) - f(x0+dx);
dd2=dy/dx; // 导数 新值
判断新旧导数值之差是否满足精度,满足则得结果,不满足则返回
if ( fabs(dd1-dd2) < 1e-06 ) { 得结果dd2...}
else { dd1=dd2;goto Lab;};
2009-05-21
展开全部
用软件mathematics,C求不出来,除非找到符号计算库或者自己编库
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询