求积分,非诚勿扰!
1个回答
展开全部
解:∫arctan√xdx
=xarctan√x-∫x*1/[1+(√x)^2]*1/2*1/√xdx
=xarctan√x-1/2*∫√x/(1+x)*dx (令√x=t,则x=t^2,dx=2tdt)
=xarctan√x-1/2*∫t/(1+t^2)*2tdt
=xarctan√x-∫[1-1/(1+t^2)]dt
=xarctan√x-t+∫[1/(1+t^2)]dt
=xarctan√x-√x+arctan√x+C
=(x+1)arctan√x-√x+C
=xarctan√x-∫x*1/[1+(√x)^2]*1/2*1/√xdx
=xarctan√x-1/2*∫√x/(1+x)*dx (令√x=t,则x=t^2,dx=2tdt)
=xarctan√x-1/2*∫t/(1+t^2)*2tdt
=xarctan√x-∫[1-1/(1+t^2)]dt
=xarctan√x-t+∫[1/(1+t^2)]dt
=xarctan√x-√x+arctan√x+C
=(x+1)arctan√x-√x+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询