高中数学数列题
已知数列{an}的前n项和为Sn,且a1=1/2,an+1=(n+1)an/2n.(1)求数列{an}的通项公式;(2)设bn=n(2-Sn),n∈N*,若集合M={n|...
已知数列{an}的前n项和为Sn,且a1=1/2,an+1=(n+1)an/2n.
(1)求数列{an}的通项公式;
(2)设bn=n(2-Sn),n∈N*,若集合M={n|bn≥λ,n∈N*}恰有4个元素,求实数λ的取值范围.
谢谢! 展开
(1)求数列{an}的通项公式;
(2)设bn=n(2-Sn),n∈N*,若集合M={n|bn≥λ,n∈N*}恰有4个元素,求实数λ的取值范围.
谢谢! 展开
2个回答
展开全部
1.
a(n+1)=(n+1)an/(2n)
a(n+1)/(n+1)=(1/2)(an/n)
[a(n+1)/(n+1)]/(an/n)=1/2,为定值
a1/1=(1/2)/1=1/2,数列{an/n}是以1/2为首项,1/2为公比的等比数列
an/n=1/2ⁿ
an=n/2ⁿ
数列{an}的通项公式为an=n/2ⁿ
2.
Sn=a1+a2+...+an=1/2+2/2²+3/2³+...+n/2ⁿ
Sn /2=1/2²+2/2³+...+(n-1)/2ⁿ+n/2^(n+1)
Sn -Sn /2=Sn /2=1/2+1/2²+...+1/2ⁿ -n/2^(n+1)
=(1/2)(1-1/2ⁿ)/(1-1/2) -n/2^(n+1)
=1- (n+2)/2^(n+1)
Sn=2- (n+2)/2ⁿ
n=1时,b1=1×(2-S1)=1×(2-a1)=1×(2-1/2)=3/2
n=2时,b2=1×(2-S2)=1×(2-2+4/4)=1
n≥2时,
bn=n(2-Sn)=n[2-2+(n+2)/2ⁿ]=n(n+2)/2ⁿ
b(n+1)/bn=[(n+1)(n+3)/2^(n+1)]/[n(n+2)/2ⁿ]
=(n+1)(n+3)/[2n(n+2)]
=(n²+4n+3)/(2n²+4n)
n为正整数,n²+4n+3>0 2n²+4n>0
2n²+4n-(n²+4n+3)=n²-3 n≥2,n²-3>0 2n²+4n>n²+4n+3
0<(n²+4n+3)/(2n²+4n)<1,即数列从第2项开始单调递减,又b2=1<b1,数列{bn}单调递减
要bn≥λ恰有4个元素,只要b4≥λ b5<λ
b4=4×(4+2)/2⁴=3/2≥λ λ≤3/2
b5=5×(5+2)/2^5=35/32< λ λ>35/32
综上,得 35/32<λ≤3/2
a(n+1)=(n+1)an/(2n)
a(n+1)/(n+1)=(1/2)(an/n)
[a(n+1)/(n+1)]/(an/n)=1/2,为定值
a1/1=(1/2)/1=1/2,数列{an/n}是以1/2为首项,1/2为公比的等比数列
an/n=1/2ⁿ
an=n/2ⁿ
数列{an}的通项公式为an=n/2ⁿ
2.
Sn=a1+a2+...+an=1/2+2/2²+3/2³+...+n/2ⁿ
Sn /2=1/2²+2/2³+...+(n-1)/2ⁿ+n/2^(n+1)
Sn -Sn /2=Sn /2=1/2+1/2²+...+1/2ⁿ -n/2^(n+1)
=(1/2)(1-1/2ⁿ)/(1-1/2) -n/2^(n+1)
=1- (n+2)/2^(n+1)
Sn=2- (n+2)/2ⁿ
n=1时,b1=1×(2-S1)=1×(2-a1)=1×(2-1/2)=3/2
n=2时,b2=1×(2-S2)=1×(2-2+4/4)=1
n≥2时,
bn=n(2-Sn)=n[2-2+(n+2)/2ⁿ]=n(n+2)/2ⁿ
b(n+1)/bn=[(n+1)(n+3)/2^(n+1)]/[n(n+2)/2ⁿ]
=(n+1)(n+3)/[2n(n+2)]
=(n²+4n+3)/(2n²+4n)
n为正整数,n²+4n+3>0 2n²+4n>0
2n²+4n-(n²+4n+3)=n²-3 n≥2,n²-3>0 2n²+4n>n²+4n+3
0<(n²+4n+3)/(2n²+4n)<1,即数列从第2项开始单调递减,又b2=1<b1,数列{bn}单调递减
要bn≥λ恰有4个元素,只要b4≥λ b5<λ
b4=4×(4+2)/2⁴=3/2≥λ λ≤3/2
b5=5×(5+2)/2^5=35/32< λ λ>35/32
综上,得 35/32<λ≤3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询