傅里叶变换是用来做什么的,具体举例一下应用?
2个回答
展开全部
计算机上的声音和图像信号、工程上的任何波动信息、数学上的解微分方程、天文学上对遥远星体的观测,到处都要用到傅里叶变换。你用手机播放MP3音乐、看图片、语音识别,这些都是傅里叶变换的日常应用。
本质上讲,傅里叶变换,是把一个复杂事物,拆解成一堆标准化的简单事物的方法。拿声音举例,我们知道声音是物体振动发出的,它是一种波,通过空气或其他介质进行传播。
如果用声波记录仪记录并显示这些波的振动形式,会发现生活中的绝大部分的声音是都是非常复杂甚至杂乱无章的。
扩展资料
根据原信号的不同类型,我们可以把傅里叶变换分为四种类别:
1、非周期性连续信号傅里叶变换(Fourier Transform)
2、周期性连续信号傅里叶级数(Fourier Series)
3、非周期性离散信号离散时域傅里叶变换(Discrete Time Fourier Transform)
4、周期性离散信号离散傅里叶变换(Discrete Fourier Transform)
参考资料来源:百度百科-傅里叶变换
展开全部
我通信的 可以给你通俗的说一下 傅里叶变换。举个例子先,你看一场NBA比赛咋看?直接看直播不是;但是另外一种情况,我们还看这些东西,比如那些统计数据,得分,篮板,助攻,盖帽啥的。其实这些统计数据相当于从另外一种方法诠释了这场比赛。同理,对一个信号,我们一般看到的仅仅是它的时域波形,但在很多情况下,仅仅了解时域波形不足以了解这个函数的全部信息,因而我们需要从另外一个维度去看这个信号。傅里叶变换就是从频域看这个信号。而时域和频域转化的落脚点就是那两个经典的公式。举个经典的例子,函数f=cos(2πt),时域图像,就是一个余弦,你能从函数图像直接看到啥?最大值最小值 周期。。。再看他的傅里叶变换后的函数图像,仅仅是两个尖脉冲,这两个脉冲只在特定的频率处有值。我们从中可以明确看到这个函数的频率信息。对于复杂的信号,更是如此。
简单应用,滤波。。。举个简单例子,假如有两个信号f=cos(2πt)和f=cos(2000πt),但是现在两个信号混叠在一起,我们要把他们分离。对他们各自进行傅里叶变换后。很明显两个信号在频域特征特别容易分离,我们依据这个,适当采用滤波器。就能进行分离。复杂信号也是如此。
说的有点啰嗦了。。。。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询