三角函数公式是什么啊?

 我来答
汤旭杰律师
2014-01-13 · 律师
汤旭杰律师
采纳数:135 获赞数:48527

向TA提问 私信TA
展开全部

下面是三角函数大部分公式! 满意就给个100%哦!谢了!   锐角三角函数公式
   sin α=∠α的对边 / 斜边
  cos α=∠α的邻边 / 斜边
  tan α=∠α的对边 / ∠α的邻边
  cot α=∠α的邻边 / ∠α的对边
        两角和公式
  sin(A+B) = sinAcosB+cosAsinB
  sin(A-B) = sinAcosB-cosAsinB ?
  cos(A+B) = cosAcosB-sinAsinB
  cos(A-B) = cosAcosB+sinAsinB
  tan(A+B) = (tanA+tanB)/(1-tanAtanB)
  tan(A-B) = (tanA-tanB)/(1+tanAtanB)
  cot(A+B) = (cotAcotB-1)/(cotB+cotA) ?
  cot(A-B) = (cotAcotB+1)/(cotB-cotA) 编辑本段|回到顶部倍角公式   Sin2A=2SinA??CosA
  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
  tan2A=2tanA/1-tanA^2 编辑本段|回到顶部三倍角公式   tan3a = tan a · tan(π/3+a)· tan(π/3-a) 编辑本段|回到顶部三倍角公式推导 编辑本段|回到顶部半角公式      tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
  sin^2(a/2)=(1-cos(a))/2
  cos^2(a/2)=(1+cos(a))/2
                                                                  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
   编辑本段|回到顶部和差化积   sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
  sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
  cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
  cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
  tanA+tanB=sin(A+B)/cosAcosB 编辑本段|回到顶部积化和差   sin(a)sin(b) = -1/2*[sin(a+b)-sin(a-b)]
  cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
  sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
  cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 编辑本段|回到顶部诱导公式 常用的诱导公式有以下几组:
  公式一:
  设α为任意角,终边相同的角的同一三角函数的值相等:
  sin(2kπ+α)=sinα
  cos(2kπ+α)=cosα
  tan(2kπ+α)=tanα
  cot(2kπ+α)=cotα
  公式二:
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)=-sinα
  cos(π+α)=-cosα
  tan(π+α)=tanα
  cot(π+α)=cotα
  公式三:
  任意角α与 -α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  公式四:
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  公式五:
  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  公式六:
  π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)=cosα
  cos(π/2+α)=-sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
  诱导公式记忆口诀
  ※规律总结※
  上面这些诱导公式可以概括为:
  对于k·π/2±α(k∈Z)的个三角函数值,
  ①当k是偶数时,得到α的同名函数值,即函数名不改变;
  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
  (奇变偶不变)
  然后在前面加上把α看成锐角时原函数值的符号。
  (符号看象限)
  例如:
  sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
  当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
  所以sin(2π-α)=-sinα
  上述的记忆口诀是:
  奇变偶不变,符号看象限。
  公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
  所在象限的原三角函数值的符号可记忆
  水平诱导名不变;符号看象限。
  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
  这十二字口诀的意思就是说:
  第一象限内任何一个角的四种三角函数值都是“+”;
  第二象限内只有正弦是“+”,其余全部是“-”;
  第三象限内只有正切是“+”,其余全部是“-”;
  第四象限内只有余弦是“+”,其余全部是“-”.
  上述记忆口诀,一全正,二正弦,三正切,四余弦   编辑本段|回到顶部万能公式  (1) (sinα)^2+(cosα)^2=1
  (2)1+(tanα)^2=(secα)^2
  (3)1+(cotα)^2=(cscα)^2
  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
  (4)对于任意非直角三角形,总有
  tanA+tanB+tanC=tanAtanBtanC
  证:
  A+B=π-C
  tan(A+B)=tan(π-C)
  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
  整理可得
  tanA+tanB+tanC=tanAtanBtanC
  得证
  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
  (5)cotAcotB+cotAcotC+cotBcotC=1
  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC  

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
功业足千秋P
高粉答主

2020-10-26 · 醉心答题,欢迎关注
知道答主
回答量:3.4万
采纳率:11%
帮助的人:1656万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式