已知a,b,c分别为三角形ABC三个内角A,B,C的对边,2bcosC=2a-c.①求B②
已知a,b,c分别为三角形ABC三个内角A,B,C的对边,2bcosC=2a-c.①求B②若cosC=2/3,求sinA的值?...
已知a,b,c分别为三角形ABC三个内角A,B,C的对边,2bcosC=2a-c.①求B②若cosC=2/3,求sinA的值?
展开
2个回答
2013-12-29
展开全部
1)由正弦定理得
2sinBcosC=2sinA-sinC,
在△ABC中
sinA=sin(B+C)=sinBcosC+sinCcosB,
2sinBcosC=2sinBcosC+2sinCcosB-sinC
∴sinC(2cosB-1)=0.
又∵0<C<π,sinC>0,
∴cosB=1/2,
注意到0<B<π,
∴B=π/3
(2)∵S△ABC=1/2acsinB=√3,
∴ac=4,
由余弦定理得
b^2=a^2+c^2-2accosB=a^2+c^2-ac=(a+c)^2-3ac,
∴(a+c)^2=b^2+3ac=16,
∴a+c=4,
又ac=4,
所以a=c=2,
故△ABC是等边三角形.
2sinBcosC=2sinA-sinC,
在△ABC中
sinA=sin(B+C)=sinBcosC+sinCcosB,
2sinBcosC=2sinBcosC+2sinCcosB-sinC
∴sinC(2cosB-1)=0.
又∵0<C<π,sinC>0,
∴cosB=1/2,
注意到0<B<π,
∴B=π/3
(2)∵S△ABC=1/2acsinB=√3,
∴ac=4,
由余弦定理得
b^2=a^2+c^2-2accosB=a^2+c^2-ac=(a+c)^2-3ac,
∴(a+c)^2=b^2+3ac=16,
∴a+c=4,
又ac=4,
所以a=c=2,
故△ABC是等边三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询