如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上. (1)求证:BE=CE; (2)如图2,
如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,角BAC=45...
如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上. (1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,角BAC=45°,求证:AE=2BD
要详细过程
没图请见谅 展开
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,角BAC=45°,求证:AE=2BD
要详细过程
没图请见谅 展开
2个回答
展开全部
证明:在△ABC中
∵AB=AC 点D是BC的中点
∴AD⊥BC
∴ED⊥BC
∴△BEC为等腰三角形
∴BE=CE
(2) ∵BF⊥AC ∠BAC=45°
∴∠ABF=90°-45°=45°
∴AF=BF
∵∠AFE=∠BFC=90°
∵∠EAF+∠AEF=90° ∠CBF+∠BED=90°
∵∠AEF=∠BED (对顶角)
∴∠EAF=∠CBF
∴Rt△AFE≌Rt△BFC
∴AE=BC
∵BC=2BD
∴AE=2BD
∵AB=AC 点D是BC的中点
∴AD⊥BC
∴ED⊥BC
∴△BEC为等腰三角形
∴BE=CE
(2) ∵BF⊥AC ∠BAC=45°
∴∠ABF=90°-45°=45°
∴AF=BF
∵∠AFE=∠BFC=90°
∵∠EAF+∠AEF=90° ∠CBF+∠BED=90°
∵∠AEF=∠BED (对顶角)
∴∠EAF=∠CBF
∴Rt△AFE≌Rt△BFC
∴AE=BC
∵BC=2BD
∴AE=2BD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询