1个回答
展开全部
证明:过D作DF⊥BC于F,
在△ADC中,∠CAD=30°,AD=AC,
∴∠ACD=75°,
∵∠ACB=90°,
∴∠FCD=15°,
在△ACE中,∠CAE=30°,CE⊥AD,
∴∠ACE=60°,
∴∠ECD=∠ACD-∠ACE=15°,
∴∠ECD=∠FCD,
∴DF=DE.
∵在Rt△DCE与Rt△DCF中,
DC=DC,DE=DF.
∴Rt△DCE≌Rt△DCF,
∴CF=CE=5,
∵BC=10,
∴BF=FC,
∵DF⊥BC,
∴BD=CD.
在△ADC中,∠CAD=30°,AD=AC,
∴∠ACD=75°,
∵∠ACB=90°,
∴∠FCD=15°,
在△ACE中,∠CAE=30°,CE⊥AD,
∴∠ACE=60°,
∴∠ECD=∠ACD-∠ACE=15°,
∴∠ECD=∠FCD,
∴DF=DE.
∵在Rt△DCE与Rt△DCF中,
DC=DC,DE=DF.
∴Rt△DCE≌Rt△DCF,
∴CF=CE=5,
∵BC=10,
∴BF=FC,
∵DF⊥BC,
∴BD=CD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询