展开全部
(ab^-1c^3)的根号÷(a^2b^-2c^2)的3次方根
a,b,c 都不等于0.
[ab^(-1)c^3] > 0.
原式 = [ab^(-1)c^3]^(1/2)/[a^2b^(-2)c^2]^(1/3)
= [ab^(-1)c^3]^(1/2)c^(4/3)/{[a^2b^(-2)c^2]^(1/3)*c^(4/3)}
= [ab^(-1)c^3]^(1/2)c^(4/3)/[a^2b^(-2)c^2*c^4]^(1/3)
= [ab^(-1)c^3]^(1/2)c^(4/3)/[a^2b^(-2)c^6]^(1/3)
= [ab^(-1)c^3]^(1/2)c^(4/3)/[ab^(-1)c^3]^(2/3)
= [ab^(-1)c^3]^[1/2 - 2/3]c^(4/3)
= [ab^(-1)c^3]^[-1/6]c^(4/3)
a,b,c 都不等于0.
[ab^(-1)c^3] > 0.
原式 = [ab^(-1)c^3]^(1/2)/[a^2b^(-2)c^2]^(1/3)
= [ab^(-1)c^3]^(1/2)c^(4/3)/{[a^2b^(-2)c^2]^(1/3)*c^(4/3)}
= [ab^(-1)c^3]^(1/2)c^(4/3)/[a^2b^(-2)c^2*c^4]^(1/3)
= [ab^(-1)c^3]^(1/2)c^(4/3)/[a^2b^(-2)c^6]^(1/3)
= [ab^(-1)c^3]^(1/2)c^(4/3)/[ab^(-1)c^3]^(2/3)
= [ab^(-1)c^3]^[1/2 - 2/3]c^(4/3)
= [ab^(-1)c^3]^[-1/6]c^(4/3)
展开全部
原式=a^(1/2)b^(-1/2)c^(3/2)÷[a^(2/3)b^(-2/3)c^(2/3)]
=a^(1/2-2/3)b^(-1/2+2/3)c^(3/2-2/3)
=a^(-1/6)b^(1/6)c^(5/6)
=a^(1/2-2/3)b^(-1/2+2/3)c^(3/2-2/3)
=a^(-1/6)b^(1/6)c^(5/6)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-07-29
展开全部
这种题还是要有用笔算
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询