设数列{an}的前n项和为Sn,点(an,Sn)在直线y=3/2x-1上
求数列{an}的通项公式在an与a(n+1)之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{1/dn}的前n项和Tn...
求数列{an}的通项公式
在an与a(n+1)之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{1/dn}的前n项和Tn 展开
在an与a(n+1)之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{1/dn}的前n项和Tn 展开
1个回答
展开全部
(an,Sn)在直线y=(3/2)x-1
Sn =(3/2)an-1
n=1, a1= 2
an = Sn -S(n-1)
=(3/2)an -(3/2)a(n-1)
an = 3a(n-1)
=3^(n-1) .a1
=2.3^(n-1)
let
dn = d1+(n-1)d
d1 = an
d(n+2) = a(n+1)
a(n+1) - an = (n+2)d
4.3^(n-1) = (n+2)d
d = 4.3^(n-1) /(n+2)
dn = d1+ (n-1)d
= 2.3^(n-1) +(n-1).4.3^(n-1) /(n+2)
= 2.3^(n-1) + 4.3^(n-1) - 3/[4.3^(n-1)]
d1+d2+...+dn
= 3^n -1 + 2(3^n -1) - (3/4)( 1- 1/3^n )/(1-1/3)
= 3(3^n -1) - ( 1- 1/3^n )
Sn =(3/2)an-1
n=1, a1= 2
an = Sn -S(n-1)
=(3/2)an -(3/2)a(n-1)
an = 3a(n-1)
=3^(n-1) .a1
=2.3^(n-1)
let
dn = d1+(n-1)d
d1 = an
d(n+2) = a(n+1)
a(n+1) - an = (n+2)d
4.3^(n-1) = (n+2)d
d = 4.3^(n-1) /(n+2)
dn = d1+ (n-1)d
= 2.3^(n-1) +(n-1).4.3^(n-1) /(n+2)
= 2.3^(n-1) + 4.3^(n-1) - 3/[4.3^(n-1)]
d1+d2+...+dn
= 3^n -1 + 2(3^n -1) - (3/4)( 1- 1/3^n )/(1-1/3)
= 3(3^n -1) - ( 1- 1/3^n )
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询