已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且 ∠A=90°,求四边形ABCD的面积。
已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。...
已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且 ∠A=90°,求四边形ABCD的面积。
展开
2个回答
展开全部
解:连结BD,
∵∠A=90°,AB=3cm,AD=4cm,
∴BD=5cm,
∵BC=13cm,CD=12cm,
∴BD^2+CD^2=BC^2
∴△BCD为直角三角形,
∴S四边形ABCD=S三角形ABD+S三角形BCD
=AD·AB/2+BD·DC/2
=4×3/2+5×12/2
=36
扩展资料
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
资料来源:百度百科-勾股定理
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询