如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA

如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。.(1)求证:DM∥平面PAC;(2)... 如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。 .(1)求证:DM∥平面PAC;(2)求证:平面PAC⊥平面ABC;(3)求三棱锥M-BCD的体积 展开
 我来答
手机用户54245
推荐于2016-12-01 · 超过49用户采纳过TA的回答
知道答主
回答量:107
采纳率:0%
帮助的人:119万
展开全部
(1)详见解析,(2)详见解析,(3)


试题分析:(1)证线面平行找线线平行,本题有中点条件,可利用中位线性质.即DM∥AP,写定理条件时需完整,因为若缺少DM 面APC,,则DM可能在面PAC内,若缺少AP 面APC,则DM与面PAC位置关系不定.(2)证面面垂直关键找线面垂直.可由面面垂直性质定理探讨,因为BC垂直AC,而AC为两平面的交线,所以应有BC垂直于平面PAC,这就是本题证明的首要目标.因为BC垂直AC,因此只需证明BC垂直平面PAC另一条直线.这又要利用线面垂直与线线垂直关系转化.首先将题目中等量关系转化为垂直条件,即DM⊥PB,从而有PA⊥PB,而PA⊥PC,所以PA⊥面PBC,因此PA⊥BC.(3)求锥的体积关键找出高,有(2)有PA⊥面PBC,因此DM为高,利用体积公式可求得
试题解析:(1)D为AB中点,M为PB中点
DM∥AP
DM 面APC,AP 面APC
DM∥面PAC
(2) △PDB是正三角形,M为PB中点
DM⊥PB,又 DM∥AP, PA⊥PB
PA⊥PC,PB PC=P,PA⊥面PBC
BC 面PBC, PA⊥BC
∠ACB=90°, BC⊥AC
AC PA=A, BC⊥面PAC
BC 面ABC, 面PAC⊥面ABC
(3) AB=20,D为AB中点,AP⊥面PBC
PD=10
△PDB为正三角形, DM=5
BC=4,PB=10, PC=2
S△PBC=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式