如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上下两极板问电势差为U,间距为L;右侧

如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上下两极板问电势差为U,间距为L;右侧为“台形”匀强磁场区域ACDH,其中,AH//CD,=4L。一束电荷... 如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上下两极板问电势差为U,间距为L;右侧为“台形”匀强磁场区域ACDH,其中,AH//CD, =4L。一束电荷量大小为q、质量不等的带电粒子(不计重力、可视为质点),从狭缝S 1 射入左侧装置中恰能沿水平直线运动并从狭缝S 2 射出,接着粒子垂直于AH、由AH的中点M射入“台形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“台形”宽度 =L,忽略电场、磁场的边缘效应及粒子间的相互作用。 (1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;(2)求出这束粒子可能的质量最小值和最大值;(3)求出(2)问中偏转角度最大的粒子在“台形”区域中运动的时间。 展开
 我来答
19810711
2014-10-05 · 超过67用户采纳过TA的回答
知道答主
回答量:146
采纳率:40%
帮助的人:70.2万
展开全部
(1) (2) (3)


试题分析:(1)由于粒子在“台形”磁场中从边界AC射出,可知粒子带正电
由于粒子在左侧正交电磁场中沿直线通过,且洛伦兹力不做功,故粒子速率不变
故有: ,而 ,所以
(2)在台形区域内,粒子匀速圆周运动,根据牛顿第二定律,有
由上式知:当粒子质量最小时,R最小,粒子运动轨迹恰好与AC相切,如图,

当粒子质量有最大值时,R最大,粒子运动轨迹恰好过C点,如图

根据几何关系有 ,所以
因为 ,所以 是等边三角形,
解得:
(3)粒子运动周期
粒子沿质量最小时的轨迹运动时对应圆心角最大,有
解得
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式