如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°
如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若...
如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.
展开
1个回答
展开全部
(1)解:∵∠A=50°,
∴∠C=
(180°-∠A)=
(180°-50°)=65°,
∵EG⊥BC,
∴∠CEG=90°-∠C=90°-65°=25°,
∵∠A=50°,∠D=30°,
∴∠CEF=∠A+∠D=50°+30°=80°,
∴∠GEF=∠CEF-∠CEG=80°-25°=55°;
(2)证明:过点E作EH∥AB交BC于H,
则∠ABC=∠EHC,∠D=∠FEH,
∵AB=AC,
∴∠ABC=∠C,
∴∠EHC=∠C,
∴EC=EH,
∵BD=CE,
∴BD=EH,
在△BDF和△HEF中,
,
∴△BDF≌△HEF(AAS),
∴BF=FH,
又∵EC=EH,EG⊥BC,
∴CG=HG,
∴FG=FH+HG=BF+CG.
∴∠C=
1 |
2 |
1 |
2 |
∵EG⊥BC,
∴∠CEG=90°-∠C=90°-65°=25°,
∵∠A=50°,∠D=30°,
∴∠CEF=∠A+∠D=50°+30°=80°,
∴∠GEF=∠CEF-∠CEG=80°-25°=55°;
(2)证明:过点E作EH∥AB交BC于H,
则∠ABC=∠EHC,∠D=∠FEH,
∵AB=AC,
∴∠ABC=∠C,
∴∠EHC=∠C,
∴EC=EH,
∵BD=CE,
∴BD=EH,
在△BDF和△HEF中,
|
∴△BDF≌△HEF(AAS),
∴BF=FH,
又∵EC=EH,EG⊥BC,
∴CG=HG,
∴FG=FH+HG=BF+CG.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询