如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿AB向点B以1cm/s的速度移动,同时,点Q从点B沿边BC 向

如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿AB向点B以1cm/s的速度移动,同时,点Q从点B沿边BC向点C以2cm/s的速度移动,点P、Q分别到达... 如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿AB向点B以1cm/s的速度移动,同时,点Q从点B沿边BC 向点C以2cm/s的速度移动,点P、Q分别到达B、C两点就停止运动、设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式,并且指出t的取值范围;(2)几秒后△PBQ的面积等于8cm 2 ?(3)当t为何值时,△DPQ是等腰三角形? 展开
 我来答
wdwdsdaa65
推荐于2016-04-08 · TA获得超过2825个赞
知道答主
回答量:131
采纳率:0%
帮助的人:178万
展开全部
(1)设运动的时间为t(秒)
∵在矩形ABCD中,AB=6cm,BC=12cm
∴PB=6-t,BQ=2t
∴S △BPQ =
1
2
×PB×BQ=t(6-t)(0<t<6).

(2)∵S △BPQ =8
∴t(6-t)=8
∴t=2或t=4
∴当t=2或t=4后△PBQ的面积等于8cm 2

(3)①当DP=DQ时,
12 2 + t 2
=
6 2 +(12-2t ) 2

解得,t 1 =8+2
13
(舍去)
t 2 =8-2
13

②当DP=PQ时,
12 2 + t 2
=
(2t ) 2 +(6-t ) 2

解得,t 1 =
3-3
13
2
(舍去)
t 2 =
3+3
13
2

③当DQ=PQ时,
6 2 +(12-2t ) 2
=
(6-t ) 2 +(2t ) 2

解得,t 1 =-18-6
13
(舍去)
t 2 =-18+6
13

所以当t为8-2
13
3+3
13
2
或-18+6
13
时,△DPQ是等腰三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式