已知:如图,平行四边形ABCD中,E、F分别是边AB、CD的中点. (1)求证:四边形EBFD是平行四边形;(2)

已知:如图,平行四边形ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.... 已知:如图,平行四边形ABCD中,E、F分别是边AB、CD的中点. (1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长. 展开
 我来答
戏凝昳Yq
推荐于2016-04-16 · 超过53用户采纳过TA的回答
知道答主
回答量:109
采纳率:0%
帮助的人:109万
展开全部
(1)根据平行四边形的性质可得AB=CD,AB∥CD,再由E、F分别是边AB、CD的中点可证得BE=CF,从而可以证得结论;(2)8


试题分析:(1)根据平行四边形的性质可得AB=CD,AB∥CD,再由E、F分别是边AB、CD的中点可证得BE=CF,从而可以证得结论;
(2)由AD=AE,∠A=60°可证得△ADE是等边三角形,即得DE=AD=2,再由(1)知四边形EBFD是平行四边形,根据平行四边形的性质即可求得结果.
(1)在平行四边形ABCD中,AB=CD,AB∥CD.
∵E、F是AB、CD中点,
∴BE= AB,DF= CD.
∴BE=CF.
∵EB∥DF,
∴四边形EBFD是平行四边形;
(2)∵AD=AE,∠A=60°,
∴△ADE是等边三角形.
∴DE=AD=2,
又∵BE=AE=2,        
由(1)知四边形EBFD是平行四边形,
∴四边形EBFD的周长=2(BE+DE)=8.
点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式