如图,在矩形纸片ABCD中,AB=8,AD=4,把矩形沿直线AC折叠,点B落在E处,连接DE,其中AE交DC于P.有下面
如图,在矩形纸片ABCD中,AB=8,AD=4,把矩形沿直线AC折叠,点B落在E处,连接DE,其中AE交DC于P.有下面四种说法:①AP=5;②△APC是等边三角形;③△...
如图,在矩形纸片ABCD中,AB=8,AD=4,把矩形沿直线AC折叠,点B落在E处,连接DE,其中AE交DC于P.有下面四种说法:①AP=5;②△APC是等边三角形;③△APD≌△CPE;④四边形ACED为等腰梯形,且它的面积为25.6.其中正确的有( )个.A.1个B.2个C.3个D.4个
展开
展开全部
①∵在矩形纸片ABCD中,AB=8,AD=4,矩形沿直线AC折叠,
∴∠BAC=∠CAE,
∵CD∥AB,
∴∠BAC=∠DCA,
∴∠DCA=∠PAC,
∴PC=PA,
假设PC=x,则PA=x,
∴DP=8-x,
∴AD2+DP2=AP2,
∴42+(8-x)2=x2,
解得:x=5,
∴①AP=5,故此选项正确;
②∵PC=PA,
∴△APC是等腰三角形,故此选项错误;
③∵CE=AD,∠EPC=∠DPA,
∠ADP=∠CEP,
∴△APD≌△CPE;故此选项正确;
④作EQ⊥AC,
∵可证△EAC≌△DAC,
∴两三角形面积相等,
∴DE∥AC,
∵AD=EC,
∴四边形ACED为等腰梯形,
∵PC=5,
∴DP=3,∵AP=5,∴PE=3,
∵EQ×AC=AE×EC,
∴EQ=
,
∵△DPE∽△CPA,
∴
=
,
∴DE=
,
∴梯形面积为:
×
×(
+4
),
=25.6.
∴它的面积为25.6.故此选项正确;
其中正确的有3个.
故选:C.
∴∠BAC=∠CAE,
∵CD∥AB,
∴∠BAC=∠DCA,
∴∠DCA=∠PAC,
∴PC=PA,
假设PC=x,则PA=x,
∴DP=8-x,
∴AD2+DP2=AP2,
∴42+(8-x)2=x2,
解得:x=5,
∴①AP=5,故此选项正确;
②∵PC=PA,
∴△APC是等腰三角形,故此选项错误;
③∵CE=AD,∠EPC=∠DPA,
∠ADP=∠CEP,
∴△APD≌△CPE;故此选项正确;
④作EQ⊥AC,
∵可证△EAC≌△DAC,
∴两三角形面积相等,
∴DE∥AC,
∵AD=EC,
∴四边形ACED为等腰梯形,
∵PC=5,
∴DP=3,∵AP=5,∴PE=3,
∵EQ×AC=AE×EC,
∴EQ=
8
| ||
5 |
∵△DPE∽△CPA,
∴
DE |
AC |
PE |
AP |
∴DE=
12
| ||
5 |
∴梯形面积为:
1 |
2 |
8
| ||
5 |
12
| ||
5 |
5 |
=25.6.
∴它的面积为25.6.故此选项正确;
其中正确的有3个.
故选:C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询