如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是直线x=-1,且过点(-3,0),下列说法:①abc>0;②2
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是直线x=-1,且过点(-3,0),下列说法:①abc>0;②2a-b=0;③4a+2b+c<0;④若(-5,y1...
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是直线x=-1,且过点(-3,0),下列说法:①abc>0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是抛物在线两点,则y1>y2,其中正确的是( )A.②B.②③C.②④D.①②
展开
1个回答
展开全部
∵二次函数的图象开口向上,
∴a>0,
∵二次函数的图象交y轴的负半轴于一点,
∴c<0,
∵对称轴是中线x=-1,
∴-
=-1,∴b=2a>0,
∴abc<0,∴①错误;
∵b=2a,
∴2a-b=0,∴②正确;
把x=2代入y=ax2+bx+c得:y=4a+2b+c,
从图象可知,当x=2时y>0,
即4a+2b+c<0,∴③错误;
∵(-5,y1)关于直线x=-1的对称点的坐标是(3,y1),
又∵当x>-1时,y随x的增大而增大,3<5,
∴y1>y2,∴④正确;
即正确的有2个②④.
故选:C.
∴a>0,
∵二次函数的图象交y轴的负半轴于一点,
∴c<0,
∵对称轴是中线x=-1,
∴-
b |
2a |
∴abc<0,∴①错误;
∵b=2a,
∴2a-b=0,∴②正确;
把x=2代入y=ax2+bx+c得:y=4a+2b+c,
从图象可知,当x=2时y>0,
即4a+2b+c<0,∴③错误;
∵(-5,y1)关于直线x=-1的对称点的坐标是(3,y1),
又∵当x>-1时,y随x的增大而增大,3<5,
∴y1>y2,∴④正确;
即正确的有2个②④.
故选:C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询