(2012?泉州模拟)如图:点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A-D1PC

(2012?泉州模拟)如图:点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥面ACD1;③DP⊥B... (2012?泉州模拟)如图:点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥面ACD1;③DP⊥BC1;④面PDB1⊥面ACD1.其中正确的命题的序号是______. 展开
 我来答
小纯洁2mXs嵛
2014-10-17 · TA获得超过127个赞
知道答主
回答量:108
采纳率:50%
帮助的人:93.7万
展开全部
对于①,容易证明AD1∥BC1,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C的距离
均相等,所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变;正确;
对于②,连接A1B,A1C1容易证明A1C1∥AD1且相等,由于①知:AD1∥BC1
所以BA1C1∥面ACD1,从而由线面平行的定义可得;正确;
对于③由于DC⊥平面BCB1C1,所以DC⊥BC1,若DP⊥BC1,则BC1⊥平面DCP,
BC1⊥PC,则P为中点,与P为动点矛盾;错误;
对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,可得DB1⊥面ACD1,从而由面面垂直的判定知:④正确.
故答案为:①②④
小黑呈谜2143
2014-10-17 · 超过62用户采纳过TA的回答
知道答主
回答量:140
采纳率:100%
帮助的人:58.7万
展开全部
对于①,容易证明AD1∥BC1,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C的距离
均相等,所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变;正确;
对于②,连接A1B,A1C1容易证明A1C1∥AD1且相等,由于①知:AD1∥BC1
所以BA1C1∥面ACD1,从而由线面平行的定义可得;正确;
对于③由于DC⊥平面BCB1C1,所以DC⊥BC1,若DP⊥BC1,则BC1⊥平面DCP,
BC1⊥PC,则P为中点,与P为动点矛盾;错误;
对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,可得DB1⊥面ACD1,从而由面面垂直的判定知:④正确.
故答案为:①②④
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式