已知抛物线y=-x2+bx+c的图象经过点A(1,0)和B(0,5).(1)求这个抛物线的解析式.(2)设(1)中抛

已知抛物线y=-x2+bx+c的图象经过点A(1,0)和B(0,5).(1)求这个抛物线的解析式.(2)设(1)中抛物线与x轴的另一交点为C.抛物线的顶点为D,是求出点C... 已知抛物线y=-x2+bx+c的图象经过点A(1,0)和B(0,5).(1)求这个抛物线的解析式.(2)设(1)中抛物线与x轴的另一交点为C.抛物线的顶点为D,是求出点C、D的坐标和△BCD的面积.(3)点P是线段OC上一点,过点P作PH⊥x轴,与抛物线交于H点.是否存在点P,使得线段BC把△PCH分成面积相等的两部分?若存在,请求出点P的坐标.若不存在,请说明理由. 展开
 我来答
憨尘5586
推荐于2016-12-01 · TA获得超过387个赞
知道答主
回答量:131
采纳率:0%
帮助的人:65.9万
展开全部
(1)把(1,0)(0,5)代入y=-x2+bx+c得:
0=?1+b+c
c=5

解得:
b=?4
c=5

故二次函数解析式为y=-x2-4x+5.

(2)令y=0,则0=-x2-4x+5,
解得:x1=1,x2=-5,
∴C(-5,0),
由y=-x2-4x+5=-(x+2)2+9得顶点D(-2,9),
过顶点D作DE⊥x轴交线段BC于E点如图①,
由点B、C得直线BC解析式为y=x+5,
∴当x=-2时,y=3,
∴E(-2,3),
∴DE=6,
S△BCDS△BDE+S△CDE
1
2
×5×6=15



(3)存在.
理由如下:
若BC分△PCH为面积相等两部分,则需PH与线段BC的交点是线段PH的中点,
若设PH与线段BC的交点为Q,如图②,
设点P(x,0),则Q(x,x+5),H(x,-x2-4x+5),
由HQ=QP得,-x2-4x+5-(x+5)=x+5,
解得:x1=-1,x2=-5(舍去),
∴存在这样的点P,其坐标为P(-1,0).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式