如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长

如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.... 如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长. 展开
 我来答
小豪0236
推荐于2016-10-30 · TA获得超过1224个赞
知道答主
回答量:159
采纳率:62%
帮助的人:69.2万
展开全部
.


试题分析:要求四边形ACEB的周长,由题意可知:求出AB和EB的长是解答本题的关键.由条件∠ACB=90°,DE⊥BC,CE∥AD,易证明四边形ACED是平行四边形,可得DE=AC=2.再由D是BC的中点DB的长度,然后分别利用勾股定理求出Rt△BDE和Rt△ACB的边AB和EB的长,从而可求出四边形ACEB的周长.
试题解析:
解:∵∠ACB=90°,DE⊥BC,
∴AC∥DE.
又∵CE∥AD,
∴四边形ACED是平行四边形.
∴DE=AC=2.
在Rt△CDE中,由勾股定理得CD=
∵D是BC的中点,

在△ABC中,∠ACB=90°,由勾股定理得AB=
∵D是BC的中点,DE⊥BC,
∴EB=EC=4.
∴四边形ACEB的周长=AC+CE+EB+BA= .
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式