如图,平行四边形OABC的顶点O为坐标原点,A点在X轴正半轴上,∠COA=60°,OA=10cm,OC=4cm,点P从C点出发

如图,平行四边形OABC的顶点O为坐标原点,A点在X轴正半轴上,∠COA=60°,OA=10cm,OC=4cm,点P从C点出发沿CB方向,以1cm/s的速度向点B运动;点... 如图,平行四边形OABC的顶点O为坐标原点,A点在X轴正半轴上,∠COA=60°,OA=10cm,OC=4cm,点P从C点出发沿CB方向,以1cm/s的速度向点B运动;点Q从A点同时出发沿AO方向,以3cm/s的速度向原点运动,其中一个动点达到终点时,另一个动点也随之停止运动.(1)求点C,B的坐标(结果用根号表示)(2)从运动开始,经过多少时间,四边形OCPQ是平行四边形;(3)在点P,Q运动的过程中,四边形OCPQ有可能成为直角梯形吗?若能,求出运动时间;若不能,请说明理由;(4)在点P、Q运动过程中,四边形OCPQ有可能成为菱形吗?若能,求出运动时间;若不能,请说明理由. 展开
 我来答
柔顺还热诚丶饼干900
推荐于2016-08-10 · TA获得超过269个赞
知道答主
回答量:185
采纳率:0%
帮助的人:59.6万
展开全部
(1)过C作CE⊥OA于E,过B作BF⊥OA于F,
∵∠COA=60°,
∴∠1=30°,
∴OE=
1
2
CO=2cm,
在Rt△COE中,CE=
CO2?EO2
=
16?4
=2
3

∴C点坐标是(2,2
3
),
∵四边形OABC是平行四边形,
∴CO=AB,CO∥AB,
∵CE⊥OA,过B作BF⊥OA,
∴CE=BF=2
3
(平行线之间的距离相等),
∴Rt△COE≌Rt△BAF,
∴AF=EO=2,
∴OF=OA+AF=12(cm),
∴B点坐标是(12,2
3
);

(2)设从运动开始,经过x秒,四边形OCPQ是平行四边形,
10-3x=x,
解得:x=2.5,
故运动开始,经过2.5秒,四边形OCPQ是平行四边形;

(3)四边形OCPQ能成为直角梯形.
设经过t秒钟,四边形OCPQ是直角梯形,
如图所示,四边形CEQP是矩形则有CP=EQ,
t=10-2-3t,
解得:t=2,
故经过2秒钟,四边形OCPQ是直角梯形;

(4)不能成为菱形,
如果四边形OCPQ菱形,则CO=QO=CP=4cm,
∵OA=10cm,
∴AQ=10-4=6(cm),
则Q的运动时间是:6÷3=2(秒),
这时CP=2×1=2(cm)
∵CP≠4cm,
∴四边形OCPQ不能成为菱形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式