设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)>0,且f(1)=2(1)求f(0)

设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)>0,且f(1)=2(1)求f(0),f(-1)的值(2)求证:f(x)是奇函数(... 设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)>0,且f(1)=2(1)求f(0),f(-1)的值(2)求证:f(x)是奇函数(3)试问在-2≤x≤4时,f(x)是否有最值;如果没有,说出理由. 展开
 我来答
俎苦官2
推荐于2016-10-01 · 超过61用户采纳过TA的回答
知道答主
回答量:170
采纳率:100%
帮助的人:137万
展开全部
解(1)因为f(x+y)=f(x)+f(y),
令x=0,y=0
则f(0)=2f(0),
所以f(0)=0,
令x=1,y=-1,由f(1)=2得
f(0)=f(-1)+f(1)=f(-1)+2=0
解得f(-1)=-2
(2)令y=-x,由(1)中f(0)=0,及f(x+y)=f(x)+f(y),
可得f(0)=f(x)+f(-x)=0,
即f(-x)=-f(x)
故f(x)是奇函数
(3)任取x 1 <x 2 ,则x 2 -x 1 >0.?f(x 2 -x 1 )>0.
∴f(x 1 )-f(x 2 )=f(x 1 )+f(-x 2 )=f(x 1 -x 2 )=-f(x 2 -x 1 )<0,
∴f(x 1 )<f(x 2 ),
∴y=f(x)在R上为增函数.
∴y=f(x)在[-2,4]上为减函数,f(-2)为函数的最小值,f(4)为函数的最大值.
又f(4)=2f(2)=4f(1)=8,
f(-2)=2f(-1)=-4
∴函数最大值为8,最小值为-4

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式