某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每
某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(元)...
某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.
展开
1个回答
展开全部
(1)根据题意得:w=(25+x-20)(250-10x)
即:w=-10x2+200x+1250或w=-10(x-10)2+2250(0≤x≤25)
(2)∵-10<0,∴抛物线开口向下,二次函数有最大值,
当x=?
=?
=10时,销售利润最大
此时销售单价为:10+25=35(元)
答:销售单价为35元时,该商品每天的销售利润最大.
(3)由(2)可知,抛物线对称轴是直线x=10,开口向下,对称轴左侧w随x
的增大而增大,对称轴右侧w随x的增大而减小
方案A:根据题意得,x≤5,则0≤x≤5
当x=5时,利润最大
最大利润为w=-10×52+200×5+1250=2000(元),
方案B:根据题意得,25+x-20≥16,
解得:x≥11
则11≤x≤25,
故当x=11时,利润最大,
最大利润为w=-10×112+200×11+1250=2240(元),
∵2240>2000,
∴综上所述,方案B最大利润更高.
即:w=-10x2+200x+1250或w=-10(x-10)2+2250(0≤x≤25)
(2)∵-10<0,∴抛物线开口向下,二次函数有最大值,
当x=?
b |
2a |
200 |
2×(?10) |
此时销售单价为:10+25=35(元)
答:销售单价为35元时,该商品每天的销售利润最大.
(3)由(2)可知,抛物线对称轴是直线x=10,开口向下,对称轴左侧w随x
的增大而增大,对称轴右侧w随x的增大而减小
方案A:根据题意得,x≤5,则0≤x≤5
当x=5时,利润最大
最大利润为w=-10×52+200×5+1250=2000(元),
方案B:根据题意得,25+x-20≥16,
解得:x≥11
则11≤x≤25,
故当x=11时,利润最大,
最大利润为w=-10×112+200×11+1250=2240(元),
∵2240>2000,
∴综上所述,方案B最大利润更高.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询