(1)如图(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度数.(2)图(1)所示的图形
(1)如图(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度数.(2)图(1)所示的图形中,有像我们常见的学习用品--圆规.我们不妨把...
(1)如图(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度数.(2)图(1)所示的图形中,有像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,观察“规形图”图(2),试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由.(3)请你直接利用以上结论,解决以下三个问题:①如图(3),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=______°.②如图(4)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数.
展开
展开全部
(1)在△ABC中,
∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°-62°=118°,
∵∠ABD=20°,∠ACD=35°,
∴∠DBC+∠DCB=118°-20°-35°=63°
∴∠BDC=180°-(∠DBC+∠DCB)=117°;
(2)∠BDC=∠A+∠B+∠C.
理由:连接BC
在△ABC中,
∵∠A+∠ABD+∠DBC+∠ACD+∠BCD=180°,
∴∠A+∠ABD+∠ACD=180°-∠DBC-∠BCD,
在△DBC中,
∵∠BDC+∠DBC+∠BCD=180°,
∴∠BDC=180°-∠DBC-∠BCD,
∴∠BDC=∠A+∠B+∠C;
(3)①∵△XBC中,∠X=90°,
∴∠XBC+∠XCB=90°,
∵△ABC中,∠A=50°,
∴∠ABC+∠ACB=130°,
∴∠ABX+∠ACX=130°-90°=40°.
故答案为:40;
②∵∠DAE=50°,∠DBE=130°,
∴∠ADB+∠AEB=80°,
∵DC平分∠ADB,EC平分∠AEB,
∴∠ADC=
∠ADB,∠AEC=
∠AEB,
∴∠ADC+∠AEC=
(∠ADB+∠AEB)=40°,
∴∠DCE=∠A+∠ADC+∠AEC=50°+40°=90°.
∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°-62°=118°,
∵∠ABD=20°,∠ACD=35°,
∴∠DBC+∠DCB=118°-20°-35°=63°
∴∠BDC=180°-(∠DBC+∠DCB)=117°;
(2)∠BDC=∠A+∠B+∠C.
理由:连接BC
在△ABC中,
∵∠A+∠ABD+∠DBC+∠ACD+∠BCD=180°,
∴∠A+∠ABD+∠ACD=180°-∠DBC-∠BCD,
在△DBC中,
∵∠BDC+∠DBC+∠BCD=180°,
∴∠BDC=180°-∠DBC-∠BCD,
∴∠BDC=∠A+∠B+∠C;
(3)①∵△XBC中,∠X=90°,
∴∠XBC+∠XCB=90°,
∵△ABC中,∠A=50°,
∴∠ABC+∠ACB=130°,
∴∠ABX+∠ACX=130°-90°=40°.
故答案为:40;
②∵∠DAE=50°,∠DBE=130°,
∴∠ADB+∠AEB=80°,
∵DC平分∠ADB,EC平分∠AEB,
∴∠ADC=
1 |
2 |
1 |
2 |
∴∠ADC+∠AEC=
1 |
2 |
∴∠DCE=∠A+∠ADC+∠AEC=50°+40°=90°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询