命题p:方程x2+mx+1=0有两个不相等的实数根,命题q:方程4x2+4(m+2)x+1=0没有实数根.若“p或q”为假命

命题p:方程x2+mx+1=0有两个不相等的实数根,命题q:方程4x2+4(m+2)x+1=0没有实数根.若“p或q”为假命题,则实数m的取值范围为______.... 命题p:方程x2+mx+1=0有两个不相等的实数根,命题q:方程4x2+4(m+2)x+1=0没有实数根.若“p或q”为假命题,则实数m的取值范围为______. 展开
 我来答
可圣uy
2014-12-14 · 超过67用户采纳过TA的回答
知道答主
回答量:199
采纳率:0%
帮助的人:66.6万
展开全部
若方程x2+mx+1=0有两个不相等的实数根,
则判别式△=m2-4>0,
解得m>2或m<-2,即p:m>2或m<-2,¬p:-2≤m≤2.
若方程4x2+4(m+2)x+1=0没有实数根.
判别式△=16(m+2)2-4×4<0,
即(m+2)2<1,
∴-1<m+2<1,
解得-3<m<-1,
即q:-3<m<-1,¬q:x≤-3或x≥-1.
若“p或q”为假命题,
则p,q都为假命题,
?2≤m≤2
m≤?3或m≥?1

解得-1≤m≤2,
即实数m的取值范围为[-1,2].
故答案为:[-1,2].
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式