如图,在△ABC中,已知AB=AC,点D、E、F分别在边BC、CA、AB上,且BD=CE,∠BDF=∠CED,那么∠FDE与∠B相

如图,在△ABC中,已知AB=AC,点D、E、F分别在边BC、CA、AB上,且BD=CE,∠BDF=∠CED,那么∠FDE与∠B相等吗?为什么?... 如图,在△ABC中,已知AB=AC,点D、E、F分别在边BC、CA、AB上,且BD=CE,∠BDF=∠CED,那么∠FDE与∠B相等吗?为什么? 展开
 我来答
君子空情15411
推荐于2016-08-08 · TA获得超过129个赞
知道答主
回答量:179
采纳率:100%
帮助的人:115万
展开全部
∠FDE=∠B,理由为:
证明:∵AB=AC(已知),
∴∠B=∠C(等边对等角),
在△BDF和△CED中,
∠B=∠C
BD=CE
∠BDF=∠CED

∴△BDF≌△CED(ASA),
∴∠BFD=∠CDE(全等三角形对应角相等),
又∵∠FDC=∠B+∠BFD(外角性质),
∴∠FDE=∠B(等式性质).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式