(2013?宁波模拟)如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(-1,0),与
(2013?宁波模拟)如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(-1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第...
(2013?宁波模拟)如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(-1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD,垂足为F.(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当△ECA为直角三角形时,求t的值.
展开
1个回答
展开全部
解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(-1,0),
∴
,解得
,
∴这个二次函数的解析式为:y=-2x2+6x+8;
(2)∵∠EFD=∠EDA=90°
∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,
∴∠DEF=∠ODA,
∴△EDF∽△DAO,
∴
=
.
∵
=tan∠DAE=
,
∴
=
,
∴
=
,∴EF=
t.
同理
=
,
∴DF=
OA=2,∴OF=t-2.
(3)∵抛物线的解析式为:y=-2x2+6x+8,
∴C(0,8),OC=8.
如图,过E点作EM⊥x轴于点M,则四边形EFOM是矩形,
∴EF=OM.
∴在Rt△AEM中,EM=OF=t-2,AM=OA+AM=OA+EF=4+
t,
当∠CEA=90°时,CE2+AE2=AC2,即(t?10)
∴
|
|
∴这个二次函数的解析式为:y=-2x2+6x+8;
(2)∵∠EFD=∠EDA=90°
∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,
∴∠DEF=∠ODA,
∴△EDF∽△DAO,
∴
EF |
DO |
ED |
DA |
∵
ED |
DA |
1 |
2 |
∴
EF |
DO |
1 |
2 |
∴
EF |
t |
1 |
2 |
1 |
2 |
同理
DF |
OA |
ED |
DA |
∴DF=
1 |
2 |
(3)∵抛物线的解析式为:y=-2x2+6x+8,
∴C(0,8),OC=8.
如图,过E点作EM⊥x轴于点M,则四边形EFOM是矩形,
∴EF=OM.
∴在Rt△AEM中,EM=OF=t-2,AM=OA+AM=OA+EF=4+
1 |
2 |
当∠CEA=90°时,CE2+AE2=AC2,即(t?10)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载