在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=13[k(k+1)(k+
在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=13[k(k+1)(k+2)-(k-1)k(k+1)]由此得1×2=1...
在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=13[k(k+1)(k+2)-(k-1)k(k+1)]由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3)…n(n+1)=13[n(n+1)(n+2)-(n-1)n(n+1)]相加,得1×2×3+…+n(n+1)=13n(n+1)(n+2)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为______.
展开
1个回答
展开全部
∵n(n+1)(n+2)=
[n(n+1)(n+2)(n+3)?(n?1)n(n+1)(n+2)]
∴1×2×3=
(1×2×3×4-0×1×2×3)
2×3×4=
(2×3×4×5-1×2×3×4)
…
n(n+1)(n+2)=
[n(n+1)(n+2)(n+3)?(n?1)n(n+1)(n+2)]
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=
n(n+1)(n+2)(n+3)
故答案为:
n(n+1)(n+2)(n+3)
1 |
4 |
∴1×2×3=
1 |
4 |
2×3×4=
1 |
4 |
…
n(n+1)(n+2)=
1 |
4 |
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
1 |
4 |
1 |
4 |
故答案为:
1 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询