已知f(x)=x2,若a2f(2x)≤4af(x)+3f(x+1)在x∈[1,+∞)上恒成立,则实数a的取值范围是(  )A

已知f(x)=x2,若a2f(2x)≤4af(x)+3f(x+1)在x∈[1,+∞)上恒成立,则实数a的取值范围是()A.a≤-12或a≥32B.-12≤a≤32C.-3... 已知f(x)=x2,若a2f(2x)≤4af(x)+3f(x+1)在x∈[1,+∞)上恒成立,则实数a的取值范围是(  )A.a≤-12或a≥32B.-12≤a≤32C.-32≤a≤12D.a≤-32或a≥32 展开
 我来答
眼泪背叛了双眼8334
推荐于2016-12-01 · TA获得超过113个赞
知道答主
回答量:154
采纳率:87%
帮助的人:68.5万
展开全部
把f(x)=x2,代入a2f(2x)≤4af(x)+3f(x+1)可化为:(4a2-4a-3)x2-6x-3≤0,
令g(x)=(4a2-4a-3)x2-6x-3,横过(0,-3)
①当4a2-4a-3=0时,即a=?
1
2
或a=
3
2
时,原不等式化为-6x-3≤0,在x∈[1,+∞)上恒成立,
②当4a2-4a-3>0时,抛物线g(x)=(4a2-4a-3)x2-6x-3开口向上,不能满足在x∈[1,+∞)上恒成立,
③当4a2-4a-3<0时,抛物线g(x)=(4a2-4a-3)x2-6x-3开口向下,对称轴方程为x=?
?6
2(4a2?4a?3)
3
4a2?4a?3
<0,
要使(4a2-4a-3)x2-6x-3≤0,只需使g(1)≤0,∴(4a2-4a-3)12-6-3≤0,∴4a2-4a-12≤0,∴
1?
13
2
≤a≤
1+
13
2

又4a2-4a-3<0,即?
1
2
<a<
3
2

?
1
2
<a<
3
2

综上,a的范围为?
1
2
≤a≤
3
2

故选:B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式