一道高数偏导数题目。这里u和v为什么都是x、y的函数,从哪里看出来的?
2个回答
展开全部
x = e^u cosv (1)
y = e^u sinv (2)
z = uv (3)
(2)/(1): tanv = y/x (4) v = Arctan(y/x) (5)
(1)^2+(2)^2: e^(2u) = (x^2+y^2)/2 u = 0.5ln[(x^2+y^2)/2] (6)
可见:u、v 都是x、y 的函数!
∂z/∂x = (∂u/∂x)v + u(∂v/∂x) = 2xv/(x^2+y^2) - (yu/x^2)sec^2(y/x) (7) //: 代入u、v即可。
类似的方法求出:∂z/∂y .
y = e^u sinv (2)
z = uv (3)
(2)/(1): tanv = y/x (4) v = Arctan(y/x) (5)
(1)^2+(2)^2: e^(2u) = (x^2+y^2)/2 u = 0.5ln[(x^2+y^2)/2] (6)
可见:u、v 都是x、y 的函数!
∂z/∂x = (∂u/∂x)v + u(∂v/∂x) = 2xv/(x^2+y^2) - (yu/x^2)sec^2(y/x) (7) //: 代入u、v即可。
类似的方法求出:∂z/∂y .
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询