怎么判断级数 n/2n-1 的敛散性

 我来答
轮看殊O
高粉答主

2019-09-20 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:700万
展开全部

[∞ ∑ n=1] 1 / [(2n+1)] > [∞ ∑ n=1] 1 / [(2n+2)]

= (1/2)[∞ ∑ n=1] 1 / [(n+)] = (1/2)[∞ ∑ n=2] (1 / n)

后者为调和级数(是p=1时得p级数),发散,故原级数发散.

扩展资料

数收敛定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。


数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数1+2+3+4+……。

hxzhu66
高粉答主

2015-06-25 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:96%
帮助的人:1.1亿
展开全部
你好!当n趋于无穷大时,加项的极限是1/2,而收敛级数的加项一定趋于0,所以这个级数是发散的。经济数学团队帮你解答,请及时采纳。谢谢!
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-09-19
展开全部
∑n(2n+1)分之1小于∑n^2分之1,两者都是正项级数,∑n^2分之1由Cauchy收敛准则显然收敛,所以由正项级数的比较判别法可知∑n(2n+1)分之1必然收敛
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
查拉斯图拉如是说
推荐于2017-09-19 · TA获得超过3560个赞
知道小有建树答主
回答量:1212
采纳率:66%
帮助的人:355万
展开全部
首先这是一个正项级数

一般项n/2n-1>n/2n=1/2
而以1/2作为一般项的的计数是发散的,所以原级数发散
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-08-19
展开全部
[∞ ∑ n=1] 1 / [(2n+1)] > [∞ ∑ n=1] 1 / [(2n+2)]
= (1/2)[∞ ∑ n=1] 1 / [(n+)] = (1/2)[∞ ∑ n=2] (1 / n)
后者为调和级数(是p=1时得p级数),发散,故原级数发散.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式