1的平方加2的平方一直加到n的平方等于多少
1²+2²+3²+……+n²=n(n+1)(2n+1)/6。可以用(n+1)³-n³=3n²+3n+1累加得到。
证明过程:
根据立方差公式(a+1)³-a³=3a²+3a+1,则有:
a=1时:2³-1³=3×1²+3×1+1
a=2时:3³-2³=3×2²+3×2+1
a=3时:4³-3³=3×3²+3×3+1
a=4时:5³-4³=3×4²+3×4+1
.
·
·
a=n时:(n+1)³-n³=3×n²+3×n+1
等式两边相加:
(n+1)³-1=3(1²+2²+3²+······+n²)+3(1+2+3+······+n)+(1+1+1+······+1)
3(1²+2²+3²+······+n²)=(n+1)³-1-3(1+2+3+.+n)-(1+1+1+.+1)
3(1²+2²+3²+······+n²)=(n+1)³-1-3(1+n)×n÷2-n
6(1²+2²+3²+······+n²)=2(n+1)³-3n(1+n)-2(n+1)=(n+1)[2(n+1)²-3n-2]
=(n+1)[2(n+1)-1][(n+1)-1]=n(n+1)(2n+1)
所以1²+2²+······+n²=n(n+1)(2n+1)/6。
扩展资料:
立方差公式与立方和公式统称为立方公式,两者基本描述如下:
1、立方和公式,即两数立方和等于这两数的和与这两数平方和与这两数积的差的积。也可以说两数立方和等于这两数积与这两数差的不完全平方的积。
2、立方差公式,即两数立方差等于这两数差与这两数平方和与这两数积的和的积。也可以说,两数立方差等于两数差与这两数和的不完全平方的积 。
参考资料:百度百科_立方差公式
证明过程:
根据立方差公式(a+1)³-a³=3a²+3a+1,则有:
a=1时:2³-1³=3×1²+3×1+1
a=2时:3³-2³=3×2²+3×2+1
a=3时:4³-3³=3×3²+3×3+1
a=4时:5³-4³=3×4²+3×4+1.··
a=n时:(n+1)³-n³=3×n²+3×n+1
等式两边相加:
(n+1)³-1=3(1²+2²+3²+······+n²)+3(1+2+3+······+n)+(1+1+1+······+1)
3(1²+2²+3²+······+n²)=(n+1)³-1-3(1+2+3+.+n)-(1+1+1+.+1)
3(1²+2²+3²+······+n²)=(n+1)³-1-3(1+n)×n÷2-n
6(1²+2²+3²+······+n²)=2(n+1)³-3n(1+n)-2(n+1)=(n+1)[2(n+1)²-3n-2]
=(n+1)[2(n+1)-1][(n+1)-1]=n(n+1)(2n+1)
所以1²+2²+······+n²=n(n+1)(2n+1)/6。
扩展资料:
立方差公式与立方和公式统称为立方公式,两者基本描述如下:
1、立方和公式,即两数立方和等于这两数的和与这两数平方和与这两数积的差的积。也可以说两数立方和等于这两数积与这两数差的不完全平方的积。
2、立方差公式,即两数立方差等于这两数差与这两数平方和与这两数积的和的积。也可以说,两数立方差等于两数差与这两数和的不完全平方的积 。
Sn是一个递增函数,对Sn求导=2·1+2·2+.....+2·n=n(n-1),是一个二次函数型,所以大胆猜测Sn是一个三次函数型,于是假设Sn=an³+bn²+cn+d,把S1=1,S2=5,S3=14,S4=30代入Sn得出四个方程式,求出Sn=1/3n³+1/2n²+1/6n,把S5代入验证是正确的!但毕竟是猜的,所以要证明,证明方法如下:
当n=1时此等式成立,n=2时也成立。
假设当n=k时(n>1)也成立,即
Sk=1/3k³+1/2k²+1/6k,只需证明n=k+1时也成立即可,又Sk+1-Sk=(k+1)²,是成立的所以原等式成立。
证明如下:
(a+1)³-a³=3a²+3a+1(即(a+1)³=a³+3a²+3a+1)
a=1时:2³-1³=3×1²+3×1+1
a=2时:3³-2³=3×2²+3×2+1
a=3时:4³-3³=3×3²+3×3+1
a=4时:5³-4³=3×4²+3×4+1
.
a=n时:(n+1)³-n³=3×n²+3×n+1
等式两边相加:
(n+1)³-1=3(1²+2²+3²+.+n²)+3(1+2+3+.+n)+(1+1+1+.+1)
3(1²+2²+3²+.+n²)=(n+1)³-1-3(1+2+3+.+n)-(1+1+1+.+1)
3(1²+2²+3²+.+n²)=(n+1)³-1-3(1+n)×n÷2-n
6(1²+2²+3²+.+n²)=2(n+1)³-3n(1+n)-2(n+1)
=(n+1)[2(n+1)²-3n-2]
=(n+1)[2(n+1)-1][(n+1)-1]
=n(n+1)(2n+1)
∴1²+2²+.+n²=n(n+1)(2n+1)/6.
广告 您可能关注的内容 |