当然是越慢。因为已经接近最低点,训练也进入误差曲面的平坦区,每次搜索的误差下降速度是减慢的。这一点可以在
BP神经网络的误差调整公式上看出。
事实上收敛速度逐渐减慢,这是正常的,如果一定要避免这种情况,可以自适应改变学习率。
由于传统BP算法的学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用
梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。