bp神经网络收敛问题

bp神经网络训练的时候接近给定的阈值时,收敛越快还是越慢?麻烦各位大神了... bp神经网络 训练的时候接近给定的阈值时,收敛越快还是越慢?麻烦各位大神了 展开
 我来答
meng2235
2015-07-02 · TA获得超过1.4万个赞
知道大有可为答主
回答量:4585
采纳率:74%
帮助的人:3144万
展开全部
当然是越慢。因为已经接近最低点,训练也进入误差曲面的平坦区,每次搜索的误差下降速度是减慢的。这一点可以在BP神经网络的误差调整公式上看出。
事实上收敛速度逐渐减慢,这是正常的,如果一定要避免这种情况,可以自适应改变学习率。

由于传统BP算法的学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式