1个回答
展开全部
证明:
a^2/b+b^2/c+c^2/d+d^2/a
=(a^2/b)+(b^2/c+c^2/d+d^2/a)
≥(a^2/b)+(b+c+d)^2/(c+d+a) (柯西不等式)
=a^2/b+(4-a)^2/(4-b) (a+b+c+d=4)
=[a^2(4-b)+b(4-a)^2]/[b(4-b)]
=(4a^2+16b-8ab)/[b(4-b)]
=[(16b-4b^2)+(4a^2-8ab+4b^2)]/[b(4-b)]
=4+4(a-b)^2/[b(4-b)]
≥4+(a-b)^2 (4/[b(4-b)]≥1等价于(b-2)^2≥0)
a^2/b+b^2/c+c^2/d+d^2/a
=(a^2/b)+(b^2/c+c^2/d+d^2/a)
≥(a^2/b)+(b+c+d)^2/(c+d+a) (柯西不等式)
=a^2/b+(4-a)^2/(4-b) (a+b+c+d=4)
=[a^2(4-b)+b(4-a)^2]/[b(4-b)]
=(4a^2+16b-8ab)/[b(4-b)]
=[(16b-4b^2)+(4a^2-8ab+4b^2)]/[b(4-b)]
=4+4(a-b)^2/[b(4-b)]
≥4+(a-b)^2 (4/[b(4-b)]≥1等价于(b-2)^2≥0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询