
1³+2³+3³+...+n³=?为什么? 10
3个回答
展开全部
1³+2³+……+n³=(1+2+3......+n)²=[n(n+1)/2]²
公式推导:
利用立方差公式:
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2
公式推导:
利用立方差公式:
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2022-08-05 广告
苏州蓝晓生物科技有限公司。标准化核心产品:公司拥有完整的琼脂糖介质、葡聚糖介质、聚甲基丙烯酸酯介质生产线,年产分离介质50000L,产品质量稳定并达到国际领先水平。核心优势:公司核心技术人员拥有近二十年不同基质的基球开发和官能化的丰富技术经...
点击进入详情页
本回答由苏州蓝晓生物科技有限公司_提供
展开全部
1/4(n(n+1))∧2
追答
证明可以百度 立方和公式,那里给了3种证明方法,但是都比较复杂,只要了解就行了,可以直接用结论。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询